Antiparasitic
Antiparasitics are a class of medications which are indicated for the treatment of parasitic diseases, such as those caused by helminths,[1] amoeba,[2] ectoparasites, parasitic fungi,[3] and protozoa,[1] among others. Antiparasitics target the parasitic agents of the infections by destroying them or inhibiting their growth;[4] they are usually effective against a limited number of parasites within a particular class. Antiparasitics are one of the antimicrobial drugs which include antibiotics that target bacteria, and antifungals that target fungi. They may be administered orally, intravenously or topically.[4]
Broad-spectrum antiparasitics, analogous to broad-spectrum antibiotics for bacteria, are antiparasitic drugs with efficacy in treating a wide range of parasitic infections caused by parasites from different classes.
Contents
Types
<templatestyles src="Module:Hatnote/styles.css"></templatestyles>
Broad-spectrum
Antiprotozoals
<templatestyles src="Module:Hatnote/styles.css"></templatestyles>
- Melarsoprol (for treatment of sleeping sickness caused by Trypanosoma brucei)
- Eflornithine (for sleeping sickness)
- Metronidazole (for vaginitis caused by Trichomonas)
- Tinidazole (for intestinal infections caused by Giardia lamblia)
- Miltefosine (for the treatment of visceral and cutaneous leishmaniasis, currently undergoing investigation for Chagas disease)
Antihelminthic
<templatestyles src="Module:Hatnote/styles.css"></templatestyles>
Antinematodes
- Mebendazole (for most nematode infections)
- Pyrantel pamoate (for most nematode infections)
- Thiabendazole (for roundworm infections)
- Diethylcarbamazine (for treatment of Lymphatic filariasis)
- Ivermectin (for prevention of river blindness)
Anticestodes
- Niclosamide (for tapeworm infections)
- Praziquantel (for tapeworm infections)
- Albendazole (broad spectrum)
Antitrematodes
Antiamoebics
Antifungals
Medical uses
Antiparasitics treat parasitic diseases, which impact an estimated 2 billion people.[1]
Administration
Antiparastics may be given via a variety of routes depending on the specific medication, including oral, topical, and intravenous.[4]
Drug development history
Early antiparasitics were ineffective, frequently toxic to patients, and difficult to administer due to the difficulty in distinguishing between the host and the parasite.[4]
Between 1975 and 1999 only 13 of 1,300 new drugs were antiparasitics, which raised concerns that insufficient incentives existed to drive development of new treatments for diseases that disproportionately target low-income countries. This led to new public sector and public-private partnerships (PPPs), including investment by the Bill and Melinda Gates Foundation. Between 2000 and 2005, twenty new antiparasitic agents were developed or in development. In 2005, a new antimalarial cost approximately $300 million to develop with a 50% failure rate.[10]
See also
- Balsam of Peru, which has antiparasitic attributes
- Naegleria fowleri
- Balamuthia mandrillaris
References
<templatestyles src="Reflist/styles.css" />
Cite error: Invalid <references>
tag; parameter "group" is allowed only.
<references />
, or <references group="..." />
<templatestyles src="Asbox/styles.css"></templatestyles>
- ↑ 1.0 1.1 1.2 Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ 3.0 3.1 Lua error in package.lua at line 80: module 'strict' not found.
- ↑ 4.0 4.1 4.2 4.3 Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.