Normal-Wishart distribution

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

Lua error in Module:Infobox at line 199: malformed pattern (missing ']'). In probability theory and statistics, the normal-Wishart distribution (or Gaussian-Wishart distribution) is a multivariate four-parameter family of continuous probability distributions. It is the conjugate prior of a multivariate normal distribution with unknown mean and precision matrix (the inverse of the covariance matrix).[1]

Definition

Suppose

  \boldsymbol\mu|\boldsymbol\mu_0,\lambda,\boldsymbol\Lambda \sim \mathcal{N}(\boldsymbol\mu|\boldsymbol\mu_0,(\lambda\boldsymbol\Lambda)^{-1})

has a multivariate normal distribution with mean \boldsymbol\mu_0 and covariance matrix (\lambda\boldsymbol\Lambda)^{-1}, where

\boldsymbol\Lambda|\mathbf{W},\nu \sim \mathcal{W}(\boldsymbol\Lambda|\mathbf{W},\nu)

has a Wishart distribution. Then (\boldsymbol\mu,\boldsymbol\Lambda) has a normal-Wishart distribution, denoted as

 (\boldsymbol\mu,\boldsymbol\Lambda) \sim \mathrm{NW}(\boldsymbol\mu_0,\lambda,\mathbf{W},\nu) .

Characterization

Probability density function

f(\boldsymbol\mu,\boldsymbol\Lambda|\boldsymbol\mu_0,\lambda,\mathbf{W},\nu) = \mathcal{N}(\boldsymbol\mu|\boldsymbol\mu_0,(\lambda\boldsymbol\Lambda)^{-1})\ \mathcal{W}(\boldsymbol\Lambda|\mathbf{W},\nu)

Properties

Scaling

Marginal distributions

By construction, the marginal distribution over \boldsymbol\Lambda is a Wishart distribution, and the conditional distribution over \boldsymbol\mu given \boldsymbol\Lambda is a multivariate normal distribution. The marginal distribution over \boldsymbol\mu is a multivariate t-distribution.

Posterior distribution of the parameters

Lua error in package.lua at line 80: module 'strict' not found.

Generating normal-Wishart random variates

Generation of random variates is straightforward:

  1. Sample \boldsymbol\Lambda from a Wishart distribution with parameters \mathbf{W} and \nu
  2. Sample \boldsymbol\mu from a multivariate normal distribution with mean \boldsymbol\mu_0 and variance (\lambda\boldsymbol\Lambda)^{-1}

Related distributions

Notes

<templatestyles src="Reflist/styles.css" />

Cite error: Invalid <references> tag; parameter "group" is allowed only.

Use <references />, or <references group="..." />

References

  • Bishop, Christopher M. (2006). Pattern Recognition and Machine Learning. Springer Science+Business Media.
  1. Bishop, Christopher M. (2006). Pattern Recognition and Machine Learning. Springer Science+Business Media. Page 690.