Log-Laplace distribution

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

In probability theory and statistics, the log-Laplace distribution is the probability distribution of a random variable whose logarithm has a Laplace distribution. If X has a Laplace distribution with parameters μ and b, then Y = eX has a log-Laplace distribution. The distributional properties can be derived from the Laplace distribution.

Characterization

Probability density function

A random variable has a log-Laplace(μ, b) distribution if its probability density function is:[1]

f(x|\mu,b) = \frac{1}{2bx} \exp \left( -\frac{|\ln x-\mu|}{b} \right) \,\!
    = \frac{1}{2bx}
    \left\{\begin{matrix}
      \exp \left( -\frac{\mu-\ln x}{b} \right) & \mbox{if }x < \mu
      \\[8pt]
      \exp \left( -\frac{\ln x-\mu}{b} \right) & \mbox{if }x \geq \mu
    \end{matrix}\right.

The cumulative distribution function for Y when y > 0, is

F(y) = 0.5\,[1 + \sgn(\ln(y)-\mu)\,(1-\exp(-|\ln(y)-\mu|/b))].

Versions of the log-Laplace distribution based on an asymmetric Laplace distribution also exist.[2] Depending on the parameters, including asymmetry, the log-Laplace may or may not have a finite mean and a finite variance.[2]

Differential equation

   
    \left\{\begin{matrix}
      \left\{b x f'(x)+(b-1) f(x)=0,f(1)=\frac{e^{-\frac{\mu }{b}}}{2
   b}\right\} & \mbox{if }x < \mu
      \\[8pt]
      \left\{b x f'(x)+(b+1) f(x)=0,f(1)=\frac{e^{\frac{\mu }{b}}}{2 b}\right\} & \mbox{if }x \geq \mu
    \end{matrix}\right.

References

  1. Lua error in package.lua at line 80: module 'strict' not found.
  2. 2.0 2.1 Lua error in package.lua at line 80: module 'strict' not found.


<templatestyles src="Asbox/styles.css"></templatestyles>