Matrix gamma distribution

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

Lua error in Module:Infobox at line 199: malformed pattern (missing ']').

In statistics, a matrix gamma distribution is a generalization of the gamma distribution to positive-definite matrices.[1] It is a more general version of the Wishart distribution, and is used similarly, e.g. as the conjugate prior of the precision matrix of a multivariate normal distribution and matrix normal distribution. The compound distribution resulting from compounding a matrix normal with a matrix gamma prior over the precision matrix is a generalized matrix t-distribution.[1]

This reduces to the Wishart distribution with \beta=2, \alpha=\frac{n}{2}.

See also

Notes

<templatestyles src="Reflist/styles.css" />

Cite error: Invalid <references> tag; parameter "group" is allowed only.

Use <references />, or <references group="..." />

References

  • Gupta, A. K.; Nagar, D. K. (1999) Matrix Variate Distributions, Chapman and Hall/CRC ISBN 978-1584880462
  1. 1.0 1.1 Iranmanesh, Anis, M. Arashib and S. M. M. Tabatabaey (2010). "On Conditional Applications of Matrix Variate Normal Distribution". Iranian Journal of Mathematical Sciences and Informatics, 5:2, pp. 33–43.