Inverse Gaussian distribution
Probability density function
|
|
Parameters | |
---|---|
Support | |
CDF | where is the standard normal (standard Gaussian) distribution c.d.f. |
Mean | |
Mode | |
Variance | |
Skewness | |
Ex. kurtosis | |
MGF | |
CF |
In probability theory, the inverse Gaussian distribution (also known as the Wald distribution) is a two-parameter family of continuous probability distributions with support on (0,∞).
Its probability density function is given by
for x > 0, where is the mean and is the shape parameter.[1]
As λ tends to infinity, the inverse Gaussian distribution becomes more like a normal (Gaussian) distribution. The inverse Gaussian distribution has several properties analogous to a Gaussian distribution. The name can be misleading: it is an "inverse" only in that, while the Gaussian describes a Brownian Motion's level at a fixed time, the inverse Gaussian describes the distribution of the time a Brownian Motion with positive drift takes to reach a fixed positive level.
Its cumulant generating function (logarithm of the characteristic function) is the inverse of the cumulant generating function of a Gaussian random variable.
To indicate that a random variable X is inverse Gaussian-distributed with mean μ and shape parameter λ we write
Contents
Properties
Single parameter form
The probability density function (pdf) of inverse Gaussian distribution has a single parameter form given by
In this form, the mean and variance of the distribution are equal,
Also, the cumulative distribution function (cdf) of the single parameter inverse Gaussian distribution is related to the standard normal distribution by
where and where the is the cdf of standard normal distribution. The variables and are related to each other by the identity
In the single parameter form, the MGF simplifies to
An inverse Gaussian distribution in double parameter form can be transformed into a single parameter form by appropriate scaling where
The standard form of inverse Gaussian distribution is
Summation
If Xi has an IG(μ0wi, λ0wi2) distribution for i = 1, 2, ..., n and all Xi are independent, then
Note that
is constant for all i. This is a necessary condition for the summation. Otherwise S would not be inverse Gaussian.
Scaling
For any t > 0 it holds that
Exponential family
The inverse Gaussian distribution is a two-parameter exponential family with natural parameters -λ/(2μ²) and -λ/2, and natural statistics X and 1/X.
Differential equation
<templatestyles src="Module:Hatnote/styles.css"></templatestyles>
Relationship with Brownian motion
The stochastic process Xt given by
(where Wt is a standard Brownian motion and ) is a Brownian motion with drift ν.
Then, the first passage time for a fixed level by Xt is distributed according to an inverse-gaussian:
When drift is zero
A common special case of the above arises when the Brownian motion has no drift. In that case, parameter μ tends to infinity, and the first passage time for fixed level α has probability density function
This is a Lévy distribution with parameters and .
Maximum likelihood
The model where
with all wi known, (μ, λ) unknown and all Xi independent has the following likelihood function
Solving the likelihood equation yields the following maximum likelihood estimates
and are independent and
Generating random variates from an inverse-Gaussian distribution
The following algorithm may be used.[2]
Generate a random variate from a normal distribution with a mean of 0 and 1 standard deviation
Square the value
and use this relation
Generate another random variate, this time sampled from a uniform distribution between 0 and 1
If
then return
else return
Sample code in Java:
public double inverseGaussian(double mu, double lambda) {
Random rand = new Random();
double v = rand.nextGaussian(); // sample from a normal distribution with a mean of 0 and 1 standard deviation
double y = v*v;
double x = mu + (mu*mu*y)/(2*lambda) - (mu/(2*lambda)) * Math.sqrt(4*mu*lambda*y + mu*mu*y*y);
double test = rand.nextDouble(); // sample from a uniform distribution between 0 and 1
if (test <= (mu)/(mu + x))
return x;
else
return (mu*mu)/x;
}
And to plot Wald distribution in Python using matplotlib and NumPy:
import matplotlib.pyplot as plt
import numpy as np
h = plt.hist(np.random.wald(3, 2, 100000), bins=200, normed=True)
plt.show()
Related distributions
- If then
- If then
- If for then
- If then
The convolution of an inverse Gaussian distribution (a Wald distribution) and an exponential (an ex-Wald distribution) is used as a model for response times in psychology,[3] with visual search as one example.[4]
History
This distribution appears to have been first derived by Schrödinger in 1915 as the time to first passage of a Brownian motion.[5] The name inverse Gaussian was proposed by Tweedie in 1945.[6] Wald re-derived this distribution in 1947 as the limiting form of a sample in a sequential probability ratio test. Tweedie investigated this distribution in 1957 and established some of its statistical properties.
Numeric computation and software
Despite the simple formula for the probability density function, numerical probability calculations for the inverse Gaussian distribution nevertheless require special care to achieve full machine accuracy in floating point arithmetic for all parameter values.[7] Functions for the inverse Gaussian distribution are provided for the R programming language by the statmod package,[8] available from the CRAN repository.
See also
- Generalized inverse Gaussian distribution
- Tweedie distributions—The inverse Gaussian distribution is a member of the family of Tweedie exponential dispersion models
- Stopping time
References
<templatestyles src="Reflist/styles.css" />
Cite error: Invalid <references>
tag; parameter "group" is allowed only.
<references />
, or <references group="..." />
Further Reading
- System Reliability Theory by Marvin Rausand and Arnljot Høyland
- The Inverse Gaussian Distribution by Dr. V. Seshadri, Oxford Univ Press, 1993
External links
- Inverse Gaussian Distribution in Wolfram website.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Schrodinger E (1915) Zur Theorie der Fall—und Steigversuche an Teilchenn mit Brownscher Bewegung. Physikalische Zeitschrift 16, 289-295
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.