Runcic 6-cubes

From Infogalactic: the planetary knowledge core
(Redirected from Runcic 6-cube)
Jump to: navigation, search
6-demicube t0 D6.svg
6-demicube
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6-demicube t02 D6.svg
Runcic 6-cube
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
6-demicube t012 D6.svg
Runcicantic 6-cube
CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Orthogonal projections in D6 Coxeter plane

In six-dimensional geometry, a runcic 6-cube is a convex uniform 6-polytope. There are 2 unique runcic for the 6-cube.

Runcic 6-cube

Runcic 6-cube
Type uniform 6-polytope
Schläfli symbol t0,2{3,33,1}
h3{4,34}
Coxeter-Dynkin diagram CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-faces
4-faces
Cells
Faces
Edges 3840
Vertices 640
Vertex figure
Coxeter groups D6, [33,1,1]
Properties convex

Alternate names

  • Cantellated 6-demicube/demihexeract
  • Small rhombated hemihexeract (Acronym sirhax) (Jonathan Bowers)[1]

Cartesian coordinates

The Cartesian coordinates for the vertices of a runcic 6-cube centered at the origin are coordinate permutations:

(±1,±1,±1,±3,±3,±3)

with an odd number of plus signs.

Images

orthographic projections
Coxeter plane B6
Graph 200px
Dihedral symmetry [12/2]
Coxeter plane D6 D5
Graph 6-demicube t02 D6.svg 200px
Dihedral symmetry [10] [8]
Coxeter plane D4 D3
Graph 200px 200px
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph 200px 200px
Dihedral symmetry [6] [4]

Related polytopes

Runcicantic 6-cube

Runcicantic 6-cube
Type uniform 6-polytope
Schläfli symbol t0,1,2{3,33,1}
h2,3{4,34}
Coxeter-Dynkin diagram CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-faces
4-faces
Cells
Faces
Edges 5760
Vertices 1920
Vertex figure
Coxeter groups D6, [33,1,1]
Properties convex

Alternate names

  • Cantitruncated 6-demicube/demihexeract
  • Great rhombated hemihexeract (Acronym girhax) (Jonathan Bowers)[2]

Cartesian coordinates

The Cartesian coordinates for the vertices of a runcicantic 6-cube centered at the origin are coordinate permutations:

(±1,±1,±3,±5,±5,±5)

with an odd number of plus signs.

Images

orthographic projections
Coxeter plane B6
Graph 200px
Dihedral symmetry [12/2]
Coxeter plane D6 D5
Graph 6-demicube t012 D6.svg 200px
Dihedral symmetry [10] [8]
Coxeter plane D4 D3
Graph 200px 200px
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph 200px 200px
Dihedral symmetry [6] [4]

Related polytopes

This polytope is based on the 6-demicube, a part of a dimensional family of uniform polytopes called demihypercubes for being alternation of the hypercube family.

There are 47 uniform polytopes with D6 symmetry, 31 are shared by the B6 symmetry, and 16 are unique:

Notes

  1. Klitzing, (x3o3o *b3x3o3o - sirhax)
  2. Klitzing, (x3x3o *b3x3o3o - girhax)

References

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Richard Klitzing, 6D, uniform polytopes (polypeta) x3o3o *b3x3o3o, x3x3o *b3x3o3o

External links