2 31 polytope
321 |
231 |
132 |
|||
Rectified 321 |
birectified 321 |
||||
File:Up2 2 31 t1 E6.svg Rectified 231 |
Rectified 132 |
||||
Orthogonal projections in E6 Coxeter plane |
---|
In 7-dimensional geometry, 231 is a uniform polytope, constructed from the E7 group.
Its Coxeter symbol is 231, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 2-node branch.
The rectified 231 is constructed by points at the mid-edges of the 231.
These polytopes are part of a family of 127 (or 27−1) convex uniform polytopes in 7-dimensions, made of uniform polytope facets and vertex figures, defined by all permutations of rings in this Coxeter-Dynkin diagram: .
Contents
2_31 polytope
Gosset 231 polytope | |
---|---|
Type | Uniform 7-polytope |
Family | 2k1 polytope |
Schläfli symbol | {3,3,33,1} |
Coxeter symbol | 231 |
Coxeter diagram | |
6-faces | 632: 56 221 576 {35} |
5-faces | 4788: 756 211 4032 {34} |
4-faces | 16128: 4032 201 12096 {33} |
Cells | 20160 {32} |
Faces | 10080 {3} |
Edges | 2016 |
Vertices | 126 |
Vertex figure | 131 |
Petrie polygon | Octadecagon |
Coxeter group | E7, [33,2,1] |
Properties | convex |
The 231 is composed of 126 vertices, 2016 edges, 10080 faces (Triangles), 20160 cells (tetrahedra), 16128 4-faces (3-simplexes), 4788 5-faces (756 pentacrosses, and 4032 5-simplexes), 632 6-faces (576 6-simplexes and 56 221). Its vertex figure is a 6-demicube. Its 126 vertices represent the root vectors of the simple Lie group E7.
This polytope is the vertex figure for a uniform tessellation of 7-dimensional space, 331.
Alternate names
- E. L. Elte named it V126 (for its 126 vertices) in his 1912 listing of semiregular polytopes.[1]
- It was called 231 by Coxeter for its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 2-node sequence.
- Pentacontihexa-pentacosiheptacontihexa-exon (Acronym laq) - 56-576 facetted polyexon (Jonathan Bowers)[2]
Construction
It is created by a Wythoff construction upon a set of 7 hyperplane mirrors in 7-dimensional space.
The facet information can be extracted from its Coxeter-Dynkin diagram, .
Removing the node on the short branch leaves the 6-simplex. There are 576 of these facets. These facets are centered on the locations of the vertices of the 321 polytope, .
Removing the node on the end of the 3-length branch leaves the 221. There are 56 of these facets. These facets are centered on the locations of the vertices of the 132 polytope, .
The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the 6-demicube, 131, .
Images
E7 | E6 / F4 | B6 / A6 |
---|---|---|
[18] |
[12] |
[7x2] |
A5 | D7 / B6 | D6 / B5 |
200px [6] |
200px [12/2] |
200px [10] |
D5 / B4 / A4 | D4 / B3 / A2 / G2 | D3 / B2 / A3 |
200px [8] |
200px [6] |
200px [4] |
Related polytopes and honeycombs
2k1 figures in n dimensions | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Space | Finite | Euclidean | Hyperbolic | ||||||||
n | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||
Coxeter group |
E3=A2A1 | E4=A4 | E5=D5 | E6 | E7 | E8 | E9 = = E8+ | E10 = = E8++ | |||
Coxeter diagram |
|||||||||||
Symmetry | [3−1,2,1] | [30,2,1] | [[31,2,1]] | [32,2,1] | [33,2,1] | [34,2,1] | [35,2,1] | [36,2,1] | |||
Order | 12 | 120 | 384 | 51,840 | 2,903,040 | 696,729,600 | ∞ | ||||
Graph | - | - | |||||||||
Name | 2-1,1 | 201 | 211 | 221 | 231 | 241 | 251 | 261 |
Rectified 2_31 polytope
Rectified 231 polytope | |
---|---|
Type | Uniform 7-polytope |
Family | 2k1 polytope |
Schläfli symbol | {3,3,33,1} |
Coxeter symbol | t1(231) |
Coxeter diagram | |
6-faces | 758 |
5-faces | 10332 |
4-faces | 47880 |
Cells | 100800 |
Faces | 90720 |
Edges | 30240 |
Vertices | 2016 |
Vertex figure | 6-demicube |
Petrie polygon | Octadecagon |
Coxeter group | E7, [33,2,1] |
Properties | convex |
The rectified 231 is a rectification of the 231 polytope, creating new vertices on the center of edge of the 231.
Alternate names
- Rectified pentacontihexa-pentacosiheptacontihexa-exon - as a rectified 56-576 facetted polyexon (acronym rolaq) (Jonathan Bowers)[3]
Construction
It is created by a Wythoff construction upon a set of 7 hyperplane mirrors in 7-dimensional space.
The facet information can be extracted from its Coxeter-Dynkin diagram, .
Removing the node on the short branch leaves the rectified 6-simplex, .
Removing the node on the end of the 2-length branch leaves the, 6-demicube, .
Removing the node on the end of the 3-length branch leaves the rectified 221, .
The vertex figure is determined by removing the ringed node and ringing the neighboring node.
Images
E7 | E6 / F4 | B6 / A6 |
---|---|---|
File:Up2 2 31 t1 E7.svg [18] |
File:Up2 2 31 t1 E6.svg [12] |
200px [7x2] |
A5 | D7 / B6 | D6 / B5 |
200px [6] |
200px [12/2] |
File:Up2 2 31 t1 D6.svg [10] |
D5 / B4 / A4 | D4 / B3 / A2 / G2 | D3 / B2 / A3 |
File:Up2 2 31 t1 D5.svg [8] |
200px [6] |
200px [4] |
See also
Notes
References
- Lua error in package.lua at line 80: module 'strict' not found.
- H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Richard Klitzing, 7D, uniform polytopes (polyexa) x3o3o3o *c3o3o3o - laq, o3x3o3o *c3o3o3o - rolaq
Fundamental convex regular and uniform polytopes in dimensions 2–10 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Family | An | Bn | I2(p) / Dn | E6 / E7 / E8 / F4 / G2 | Hn | |||||||
Regular polygon | Triangle | Square | p-gon | Hexagon | Pentagon | |||||||
Uniform polyhedron | Tetrahedron | Octahedron • Cube | Demicube | Dodecahedron • Icosahedron | ||||||||
Uniform 4-polytope | 5-cell | 16-cell • Tesseract | Demitesseract | 24-cell | 120-cell • 600-cell | |||||||
Uniform 5-polytope | 5-simplex | 5-orthoplex • 5-cube | 5-demicube | |||||||||
Uniform 6-polytope | 6-simplex | 6-orthoplex • 6-cube | 6-demicube | 122 • 221 | ||||||||
Uniform 7-polytope | 7-simplex | 7-orthoplex • 7-cube | 7-demicube | 132 • 231 • 321 | ||||||||
Uniform 8-polytope | 8-simplex | 8-orthoplex • 8-cube | 8-demicube | 142 • 241 • 421 | ||||||||
Uniform 9-polytope | 9-simplex | 9-orthoplex • 9-cube | 9-demicube | |||||||||
Uniform 10-polytope | 10-simplex | 10-orthoplex • 10-cube | 10-demicube | |||||||||
Uniform n-polytope | n-simplex | n-orthoplex • n-cube | n-demicube | 1k2 • 2k1 • k21 | n-pentagonal polytope | |||||||
Topics: Polytope families • Regular polytope • List of regular polytopes and compounds |