Apeirogonal antiprism

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Apeirogonal antiprism
Apeirogonal antiprism
Type Semiregular tiling
Vertex configuration 120px
3.3.3.∞
Schläfli symbol sr{2,∞}
Wythoff symbol | 2 2 ∞
Coxeter diagram CDel node h.pngCDel infin.pngCDel node h.pngCDel 2x.pngCDel node h.png
CDel node.pngCDel infin.pngCDel node h.pngCDel 2x.pngCDel node h.png
Symmetry [∞,2+], (∞22)
Rotation symmetry [∞,2]+, (∞22)
Bowers acronym Azap
Dual Apeirogonal deltohedron
Properties Vertex-transitive

In geometry, an apeirogonal antiprism or infinite antiprism[1] is the arithmetic limit of the family of antiprisms; it can be considered an infinite polyhedron or a tiling of the plane.

If the sides are equilateral triangles, it is a uniform tiling. In general, it can have two sets of alternating congruent isosceles triangles, surrounded by two half-planes.

Related tilings and polyhedra

The apeirogonal antiprism is the arithmetic limit of the family of antiprisms sr{2, p} or p.3.3.3, as p tends to infinity, thereby turning the antiprism into a Euclidean tiling.

It can be constructed by an alternation operation applied to an apeirogonal prism:

Infinite prism tiling.png

Its dual tiling is an apeirogonal deltohedron:

E2 tiling 22i-8 dual.png

Similarly to the uniform polyhedra and the uniform tilings, eight uniform tilings may be based from the regular apeirogonal tiling. The rectified and cantellated forms are duplicated, and as two times infinity is also infinity, the truncated and omnitruncated forms are also duplicated, therefore reducing the number of unique forms to four: the apeirogonal tiling, the apeirogonal hosohedron, the apeirogonal prism, and the apeirogonal antiprism.

(∞ 2 2) Parent Truncated Rectified Bitruncated Birectified
(dual)
Cantellated Omnitruncated
(Cantitruncated)
Snub
Wythoff 2 | ∞ 2 2 2 | ∞ 2 | ∞ 2 2 ∞ | 2 ∞ | 2 2 ∞ 2 | 2 ∞ 2 2 | | ∞ 2 2
Schläfli {∞,2} t{∞,2} r{∞,2} t{2,∞} {2,∞} rr{∞,2} tr{∞,2} sr{∞,2}
Coxeter CDel node 1.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.png CDel node 1.pngCDel infin.pngCDel node 1.pngCDel 2.pngCDel node.png CDel node.pngCDel infin.pngCDel node 1.pngCDel 2.pngCDel node.png CDel node.pngCDel infin.pngCDel node 1.pngCDel 2.pngCDel node 1.png CDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node 1.png CDel node 1.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node 1.png CDel node 1.pngCDel infin.pngCDel node 1.pngCDel 2.pngCDel node 1.png CDel node h.pngCDel infin.pngCDel node h.pngCDel 2x.pngCDel node h.png
Image
Vertex figure
Apeirogonal tiling.png
{∞,2}
Apeirogonal tiling.png
∞.∞
Apeirogonal tiling.png
∞.∞
Infinite prism tiling.png
4.4.∞
Apeirogonal hosohedron.png
{2,∞}
Infinite prism tiling.png
4.4.∞
60px
4.4.∞
Infinite antiprism.png
3.3.3.∞

Notes

<templatestyles src="Reflist/styles.css" />

Cite error: Invalid <references> tag; parameter "group" is allowed only.

Use <references />, or <references group="..." />

References

  • The Symmetries of Things 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, ISBN 978-1-56881-220-5
  • Lua error in package.lua at line 80: module 'strict' not found.
  • T. Gosset: On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900

<templatestyles src="Asbox/styles.css"></templatestyles>

  1. Conway (2008), p. 263