E9 honeycomb

From Infogalactic: the planetary knowledge core
(Redirected from 1 62 honeycomb)
Jump to: navigation, search

In geometry, an E9 honeycomb is a tessellation of uniform polytopes in hyperbolic 9-dimensional space. {\bar{T}}_9, also (E10) is a paracompact hyperbolic group, so either facets or vertex figures will not be bounded.

E10 is last of the series of Coxeter groups with a bifurcated Coxeter-Dynkin diagram of lengths 6,2,1. There are 1023 unique E10 honeycombs by all combinations of its Coxeter-Dynkin diagram. There are no regular honeycombs in the family since its Coxeter diagram is a nonlinear graph, but there are three simplest ones, with a single ring at the end of its 3 branches: 621, 261, 162.

621 honeycomb

621 honeycomb
Family k21 polytope
Schläfli symbol {3,3,3,3,3,3,32,1}
Coxeter symbol 621
Coxeter-Dynkin diagram CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png
9-faces 611 25px
{38} 9-simplex t0.svg
8-faces {37} 8-simplex t0.svg
7-faces {36} 7-simplex t0.svg
6-faces {35} 6-simplex t0.svg
5-faces {34} 5-simplex t0.svg
4-faces {33} 4-simplex t0.svg
Cells {32} 3-simplex t0.svg
Faces {3} 2-simplex t0.svg
Vertex figure 521
Symmetry group {\bar{T}}_9, [36,2,1]

The 621 honeycomb is constructed from alternating 9-simplex and 9-orthoplex facets within the symmetry of the E10 Coxeter group.

This honeycomb is highly regular in the sense that its symmetry group (the affine E9 Weyl group) acts transitively on the k-faces for k ≤ 7. All of the k-faces for k ≤ 8 are simplices.

This honeycomb is last in the series of k21 polytopes, enumerated by Thorold Gosset in 1900, listing polytopes and honeycombs constructed entirely of regular facets, although his list ended with the 8-dimensional the Euclidean honeycomb, 521.[1]

Construction

It is created by a Wythoff construction upon a set of 10 hyperplane mirrors in 9-dimensional hyperbolic space.

The facet information can be extracted from its Coxeter-Dynkin diagram.

CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png

Removing the node on the end of the 2-length branch leaves the 9-orthoplex, 711.

CDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png

Removing the node on the end of the 1-length branch leaves the 9-simplex.

CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png

The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the 521 honeycomb.

CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png

The edge figure is determined from the vertex figure by removing the ringed node and ringing the neighboring node. This makes the 421 polytope.

CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png

The face figure is determined from the edge figure by removing the ringed node and ringing the neighboring node. This makes the 321 polytope.

CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png

The cell figure is determined from the face figure by removing the ringed node and ringing the neighboring node. This makes the 221 polytope.

CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png

Related polytopes and honeycombs

The 621 is last in a dimensional series of semiregular polytopes and honeycombs, identified in 1900 by Thorold Gosset. Each member of the sequence has the previous member as its vertex figure. All facets of these polytopes are regular polytopes, namely simplexes and orthoplexes.

261 honeycomb

261 honeycomb
Family 2k1 polytope
Schläfli symbol {3,3,36,1}
Coxeter symbol 261
Coxeter-Dynkin diagram CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
9-face types 251
{37}9-simplex t0.svg
8-face types 24125px, {37}8-simplex t0.svg
7-face types 231Gosset 2 31 polytope.svg, {36}7-simplex t0.svg
6-face types 221E6 graph.svg, {35}6-simplex t0.svg
5-face types 211Cross graph 5.svg, {34}5-simplex t0.svg
4-face type {33}4-simplex t0.svg
Cells {32}3-simplex t0.svg
Faces {3}2-simplex t0.svg
Vertex figure 161 9-demicube.svg
Coxeter group {\bar{T}}_9, [36,2,1]

The 261 honeycomb is composed of 251 9-honeycomb and 9-simplex facets. It is the final figure in the 2k1 family.

Construction

It is created by a Wythoff construction upon a set of 10 hyperplane mirrors in 9-dimensional hyperbolic space.

The facet information can be extracted from its Coxeter-Dynkin diagram.

CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png

Removing the node on the short branch leaves the 9-simplex.

CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png

Removing the node on the end of the 6-length branch leaves the 251 honeycomb. This is an infinite facet because E10 is a paracompact hyperbolic group.

CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png

The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the 9-demicube, 161.

CDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png

The edge figure is the vertex figure of the edge figure. This makes the rectified 8-simplex, 051.

CDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png

The face figure is determined from the edge figure by removing the ringed node and ringing the neighboring node. This makes the 5-simplex prism.

CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

Related polytopes and honeycombs

The 261 is last in a dimensional series of uniform polytopes and honeycombs.

162 honeycomb

162 honeycomb
Family 1k2 polytope
Schläfli symbol {3,36,2}
Coxeter symbol 162
Coxeter-Dynkin diagram CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
9-face types 152, 161Demiocteract ortho petrie.svg
8-face types 142Gosset 1 42 polytope petrie.svg, 151Demiocteract ortho petrie.svg
7-face types 132File:Gosset 1 32 petrie.svg, 141Demihepteract ortho petrie.svg
6-face types 122Gosset 1 22 polytope.svg, {31,3,1}Demihexeract ortho petrie.svg
{35}6-simplex t0.svg
5-face types 121Demipenteract graph ortho.svg, {34}5-simplex t0.svg
4-face type 111Cross graph 4.svg, {33}4-simplex t0.svg
Cells {32}3-simplex t0.svg
Faces {3}2-simplex t0.svg
Vertex figure t2{38} 25px
Coxeter group {\bar{T}}_9, [36,2,1]

The 162 honeycomb contains 152 (9-honeycomb) and 161 9-demicube facets. It is the final figure in the 1k2 polytope family.

Construction

It is created by a Wythoff construction upon a set of 10 hyperplane mirrors in 9-dimensional space.

The facet information can be extracted from its Coxeter-Dynkin diagram.

CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png

Removing the node on the end of the 2-length branch leaves the 9-demicube, 161.

CDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png

Removing the node on the end of the 6-length branch leaves the 152 honeycomb.

CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png

The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the birectified 9-simplex, 062.

CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png

Related polytopes and honeycombs

The 162 is last in a dimensional series of uniform polytopes and honeycombs.

Notes

  1. Conway, 2008, The Gosset series, p 413

References

  • The Symmetries of Things 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, ISBN 978-1-56881-220-5 [1]
  • Coxeter The Beauty of Geometry: Twelve Essays, Dover Publications, 1999, ISBN 978-0-486-40919-1 (Chapter 3: Wythoff's Construction for Uniform Polytopes)
  • Coxeter Regular Polytopes (1963), Macmillan Company
    • Regular Polytopes, Third edition, (1973), Dover edition, ISBN 0-486-61480-8 (Chapter 5: The Kaleidoscope)
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [2]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]