Truncated rhombicuboctahedron

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Truncated rhombicuboctahedron
280px
Schläfli symbol trr{4,3} = tr\begin{Bmatrix} 4 \\ 3 \end{Bmatrix}
Conway notation taaC
Faces 50:
24 {4}
8 {6}
6+12 {8}
Edges 144
Vertices 96
Symmetry group Oh, [4,3], (*432) order 48
Rotation group O, [4,3]+, (432), order 24
Dual polyhedron Disdyakis enneacontahexahedron
Disdyakis enneacontahexahedron.png
Properties convex, zonohedron

The truncated rhombicuboctahedron is a polyhedron, constructed as a truncated rhombicuboctahedron. It has 50 faces, 18 octagons, 8 hexagons, and 24 squares.

Other names

  • Truncated small rhombicuboctahedron
  • Beveled cuboctahedron

Zonohedron

As a zonohedron, it can be constructed with all but 12 octagons as regular polygons. It is has two sets of 48 vertices existing on two distances from its center.

It represents the Minkowski sum of a cube, a truncated octahedron, and a rhombic dodecahedron.

Excavated truncated rhombicuboctahedron

Excavated truncated rhombicuboctahedron
Faces 148:
8 {3}
24+96+6 {4}
8 {6}
6 {8}
Edges 312
Vertices 144
Euler characteristic -20
genus 11
Symmetry group Oh, [4,3], (*432) order 48

The truncated rhombicuboctahedron can have its 12 irregular octagonal faces removed, and a toroidal polyhedron seen as a network of 6 square cupola, 8 triangular cupola, and 24 triangular prisms. [1] It has 148 faces (8 triangles, 126 squares, 8 hexagons, and 6 octagons), 312 edges, and 144 vertices. With Euler characteristic χ = f + v - e = -20, its genus, g = (2-χ)/2 is 11.

Without the triangular prisms, the toroidal polyhedron becomes a truncated cuboctahedron.

Excavated
240px Excavated truncated cuboctahedron.png
Truncated rhombicuboctahedron Truncated cuboctahedron

Related polyhedra

The truncated cuboctahedron is similar, with all regular faces, and 4.6.8 vertex figure.

The triangle and squares of the rhombicuboctahedron can be independently rectified or truncated, creating four permutations of polyhedra. The partially truncated forms can be seen as edge contractions of the truncated form.

The truncated rhombicuboctahedron can be seen in sequence of rectification and truncation operations from the cuboctahedron. A further alternation step leads to the snub rhombicuboctahedron.

related polyhedra
r{4,3} rr{4,3} tr{4,3} Rectified
rrr{4,3}
Partially truncated Truncated
trr{4,3}
srCO
Uniform polyhedron-43-t1.png Uniform polyhedron-43-t02.png Uniform polyhedron-43-t012.png Expanded dual cuboctahedron.png 80px 80px 80px 80px
3.4.3.4 3.4.4.4 4.6.8 4.4.4.4 and
3.4.4.4
4.4.4.6 and
4.6.6
4.6.8 and
3.4.6.4
4.8.8 and
4.6.8
3.3.3.3.4 and
3.3.4.3.4

See also

References

External links