Titanium tetrabromide
Titanium tetrabromide | |
Ball-and-stick model of the titanium tetrabromide molecule | |
Names | |
---|---|
IUPAC name
Titanium tetrabromide
|
|
Other names
Titanium(IV) bromide
|
|
Identifiers | |
7789-68-6 | |
EC Number | 232-185-0 |
Jmol 3D model | Interactive image |
PubChem | 123263 |
|
|
|
|
Properties | |
TiBr4 | |
Molar mass | 367.483 g/mol |
Appearance | brown crystals hygroscopic |
Density | 3.25 g/cm3 |
Melting point | 39 °C (102 °F; 312 K) |
Boiling point | 230 °C (446 °F; 503 K) |
decomposition | |
Solubility in other solvents | chlorocarbons, benzene |
Structure | |
cubic, Pa3, Z = 8 | |
Tetrahedral | |
0 D | |
Vapor pressure | {{{value}}} |
Related compounds | |
Other anions
|
TiCl4 TiI4 |
Other cations
|
VCl4 |
Related compounds
|
TiCl3 VBr3 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|
verify (what is ?) | |
Infobox references | |
Titanium tetrabromide is the chemical compound with the formula TiBr4. It is the most volatile transition metal bromide. The properties of TiBr4 are an average of TiCl4 and TiI4. Some key properties of these four-coordinated Ti(IV) species are their high Lewis acidity and their high solubility in nonpolar organic solvents. TiBr4 is diamagnetic, reflecting the d0 configuration of the metal centre.[1]
Preparation and structure
This four-coordinated complex adopts a tetrahedral geometry. It can be prepared via several methods: (i) from the elements, (ii) via the reaction of TiO2 with carbon and bromine (see Kroll process), and (iii) by treatment of TiCl4 with HBr.
Reactions
Titanium tetrabromide forms adducts such as TiBr4(THF)2 and [TiBr5]−.[2] With bulky donor ligands, such as 2-methylpyridine (2-Mepy), five-coordinated adducts form. TiBr4(2-MePy) is trigonal bipyramidal with the pyridine in the equatorial plane.[3]
TiBr4 has been used as a Lewis-acid catalyst in organic synthesis.[4]
The tetrabromide and tetrachlorides of titanium react to give a statistical mixture of the mixed tetrahalides, TiBr4-xClx (x = 0-4). The mechanism of this redistribution reaction is uncertain. One proposed pathway invokes the intermediacy of dimers.[5]
Safety
TiBr4 hydrolyzes rapidly, potentially dangerously, to release hydrogen bromide.
References
<templatestyles src="Reflist/styles.css" />
Cite error: Invalid <references>
tag; parameter "group" is allowed only.
<references />
, or <references group="..." />
- ↑ Holleman, A. F.; Wiberg, E. "Inorganic Chemistry" Academic Press: San Diego, 2001. ISBN 0-12-352651-5.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- Pages with reference errors
- Pages with broken file links
- Articles without EBI source
- Chemical pages without ChemSpiderID
- Articles without KEGG source
- Articles without UNII source
- Pages using collapsible list with both background and text-align in titlestyle
- Chemical articles using a fixed chemical formula
- Bromides
- Metal halides
- Titanium compounds