Stericated 7-orthoplexes

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Orthogonal projections in B6 Coxeter plane
7-cube t0 B6.svg
7-orthoplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
160px
Stericated 7-orthoplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
160px
Steritruncated 7-orthoplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
160px
Bisteritruncated 7-orthoplex
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
160px
Stericantellated 7-orthoplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
160px
Stericantitruncated 7-orthoplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
160px
Bistericantitruncated 7-orthoplex
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
160px
Steriruncinated 7-orthoplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
160px
Steriruncitruncated 7-orthoplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
160px
Steriruncicantellated 7-orthoplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
160px
Bisteriruncitruncated 7-orthoplex
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
160px
Steriruncicantitruncated 7-orthoplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

In seven-dimensional geometry, a stericated 7-orthoplex is a convex uniform 7-polytope with 4th order truncations (sterication) of the regular 7-orthoplex.

There are 24 unique sterication for the 7-orthoplex with permutations of truncations, cantellations, and runcinations. 14 are more simply constructed from the 7-cube.

This polytope is one of 127 uniform 7-polytopes with B7 symmetry.

Stericated 7-orthoplex

Stericated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,4{35,4}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes.png
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Small cellated hecatonicosoctaexon (acronym: ) (Jonathan Bowers)[1]

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph 150px 150px 150px
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph 150px 150px 150px
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph 150px 150px
Dihedral symmetry [6] [4]

Steritruncated 7-orthoplex

steritruncated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,1,4{35,4}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes.png
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Cellitruncated hecatonicosoctaexon (acronym: ) (Jonathan Bowers)[2]

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph 150px 150px 150px
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph 150px 150px 150px
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph 150px 150px
Dihedral symmetry [6] [4]

Bisteritruncated 7-orthoplex

bisteritruncated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t1,2,5{35,4}
Coxeter-Dynkin diagrams CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 11.png
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Bicellitruncated hecatonicosoctaexon (acronym: ) (Jonathan Bowers)[3]

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph 150px 150px 150px
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph 150px 150px 150px
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph 150px 150px
Dihedral symmetry [6] [4]

Stericantellated 7-orthoplex

Stericantellated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,2,4{35,4}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes.png
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Cellirhombated hecatonicosoctaexon (acronym: ) (Jonathan Bowers)[4]

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph 150px 150px 150px
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph 150px 150px 150px
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph 150px 150px
Dihedral symmetry [6] [4]

Stericantitruncated 7-orthoplex

stericantitruncated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,1,2,4{35,4}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes.png
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Celligreatorhombated hecatonicosoctaexon (acronym: ) (Jonathan Bowers)[5]

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph 150px 150px 150px
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph 150px 150px 150px
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph 150px 150px
Dihedral symmetry [6] [4]

Bistericantitruncated 7-orthoplex

bistericantitruncated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t1,2,3,5{35,4}
Coxeter-Dynkin diagrams CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 11.png
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Bicelligreatorhombated hecatonicosoctaexon (acronym: ) (Jonathan Bowers)[6]

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph 150px 150px 150px
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph 150px 150px 150px
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph 150px 150px
Dihedral symmetry [6] [4]

Steriruncinated 7-orthoplex

Steriruncinated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,3,4{35,4}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes.png
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Celliprismated hecatonicosoctaexon (acronym: ) (Jonathan Bowers)[7]

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph too complex 150px 150px
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph 150px 150px 150px
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph 150px 150px
Dihedral symmetry [6] [4]

Steriruncitruncated 7-orthoplex

steriruncitruncated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,1,3,4{35,4}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes.png
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Celliprismatotruncated hecatonicosoctaexon (acronym: ) (Jonathan Bowers)[8]

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph 150px 150px 150px
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph 150px 150px 150px
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph 150px 150px
Dihedral symmetry [6] [4]

Steriruncicantellated 7-orthoplex

steriruncicantellated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,2,3,4{35,4}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes.png
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Celliprismatorhombated hecatonicosoctaexon (acronym: ) (Jonathan Bowers)[9]

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph 150px 150px 150px
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph 150px 150px 150px
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph 150px 150px
Dihedral symmetry [6] [4]

Steriruncicantitruncated 7-orthoplex

steriruncicantitruncated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,1,2,3,4{35,4}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes.png
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Great cellated hecatonicosoctaexon (acronym: ) (Jonathan Bowers)[10]

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph 150px 150px 150px
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph 150px 150px 150px
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph 150px 150px
Dihedral symmetry [6] [4]

Notes

  1. Klitizing, (x3o3o3o3x3o4o - )
  2. Klitizing, (x3x3o3o3x3o4o - )
  3. Klitizing, (o3x3x3o3o3x4o - )
  4. Klitizing, (x3o3x3o3x3o4o - )
  5. Klitizing, (x3x3x3o3x3o4o - )
  6. Klitizing, (o3x3x3x3o3x4o - )
  7. Klitizing, (x3o3o3x3x3o4o - )
  8. Klitizing, (x3x3x3o3x3o4o - )
  9. Klitizing, (x3o3x3x3x3o4o - )
  10. Klitizing, (x3x3x3x3x3o4o - )

References

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Richard Klitzing, 7D, uniform polytopes (polyexa)

External links