Stericated 7-orthoplexes
From Infogalactic: the planetary knowledge core
(Redirected from Stericantellated 7-orthoplex)
Orthogonal projections in B6 Coxeter plane | ||
---|---|---|
7-orthoplex |
160px Stericated 7-orthoplex |
160px Steritruncated 7-orthoplex |
160px Bisteritruncated 7-orthoplex |
160px Stericantellated 7-orthoplex |
160px Stericantitruncated 7-orthoplex |
160px Bistericantitruncated 7-orthoplex |
160px Steriruncinated 7-orthoplex |
160px Steriruncitruncated 7-orthoplex |
160px Steriruncicantellated 7-orthoplex |
160px Bisteriruncitruncated 7-orthoplex |
160px Steriruncicantitruncated 7-orthoplex |
In seven-dimensional geometry, a stericated 7-orthoplex is a convex uniform 7-polytope with 4th order truncations (sterication) of the regular 7-orthoplex.
There are 24 unique sterication for the 7-orthoplex with permutations of truncations, cantellations, and runcinations. 14 are more simply constructed from the 7-cube.
This polytope is one of 127 uniform 7-polytopes with B7 symmetry.
Contents
- 1 Stericated 7-orthoplex
- 2 Steritruncated 7-orthoplex
- 3 Bisteritruncated 7-orthoplex
- 4 Stericantellated 7-orthoplex
- 5 Stericantitruncated 7-orthoplex
- 6 Bistericantitruncated 7-orthoplex
- 7 Steriruncinated 7-orthoplex
- 8 Steriruncitruncated 7-orthoplex
- 9 Steriruncicantellated 7-orthoplex
- 10 Steriruncicantitruncated 7-orthoplex
- 11 Notes
- 12 References
- 13 External links
Stericated 7-orthoplex
Stericated 7-orthoplex | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,4{35,4} |
Coxeter-Dynkin diagrams | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Small cellated hecatonicosoctaexon (acronym: ) (Jonathan Bowers)[1]
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | 150px | 150px | 150px |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | 150px | 150px | 150px |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | 150px | 150px | |
Dihedral symmetry | [6] | [4] |
Steritruncated 7-orthoplex
steritruncated 7-orthoplex | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,1,4{35,4} |
Coxeter-Dynkin diagrams | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Cellitruncated hecatonicosoctaexon (acronym: ) (Jonathan Bowers)[2]
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | 150px | 150px | 150px |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | 150px | 150px | 150px |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | 150px | 150px | |
Dihedral symmetry | [6] | [4] |
Bisteritruncated 7-orthoplex
bisteritruncated 7-orthoplex | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t1,2,5{35,4} |
Coxeter-Dynkin diagrams | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Bicellitruncated hecatonicosoctaexon (acronym: ) (Jonathan Bowers)[3]
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | 150px | 150px | 150px |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | 150px | 150px | 150px |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | 150px | 150px | |
Dihedral symmetry | [6] | [4] |
Stericantellated 7-orthoplex
Stericantellated 7-orthoplex | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,2,4{35,4} |
Coxeter-Dynkin diagrams | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Cellirhombated hecatonicosoctaexon (acronym: ) (Jonathan Bowers)[4]
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | 150px | 150px | 150px |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | 150px | 150px | 150px |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | 150px | 150px | |
Dihedral symmetry | [6] | [4] |
Stericantitruncated 7-orthoplex
stericantitruncated 7-orthoplex | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,1,2,4{35,4} |
Coxeter-Dynkin diagrams | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Celligreatorhombated hecatonicosoctaexon (acronym: ) (Jonathan Bowers)[5]
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | 150px | 150px | 150px |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | 150px | 150px | 150px |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | 150px | 150px | |
Dihedral symmetry | [6] | [4] |
Bistericantitruncated 7-orthoplex
bistericantitruncated 7-orthoplex | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t1,2,3,5{35,4} |
Coxeter-Dynkin diagrams | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Bicelligreatorhombated hecatonicosoctaexon (acronym: ) (Jonathan Bowers)[6]
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | 150px | 150px | 150px |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | 150px | 150px | 150px |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | 150px | 150px | |
Dihedral symmetry | [6] | [4] |
Steriruncinated 7-orthoplex
Steriruncinated 7-orthoplex | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,3,4{35,4} |
Coxeter-Dynkin diagrams | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Celliprismated hecatonicosoctaexon (acronym: ) (Jonathan Bowers)[7]
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | too complex | 150px | 150px |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | 150px | 150px | 150px |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | 150px | 150px | |
Dihedral symmetry | [6] | [4] |
Steriruncitruncated 7-orthoplex
steriruncitruncated 7-orthoplex | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,1,3,4{35,4} |
Coxeter-Dynkin diagrams | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Celliprismatotruncated hecatonicosoctaexon (acronym: ) (Jonathan Bowers)[8]
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | 150px | 150px | 150px |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | 150px | 150px | 150px |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | 150px | 150px | |
Dihedral symmetry | [6] | [4] |
Steriruncicantellated 7-orthoplex
steriruncicantellated 7-orthoplex | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,2,3,4{35,4} |
Coxeter-Dynkin diagrams | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Celliprismatorhombated hecatonicosoctaexon (acronym: ) (Jonathan Bowers)[9]
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | 150px | 150px | 150px |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | 150px | 150px | 150px |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | 150px | 150px | |
Dihedral symmetry | [6] | [4] |
Steriruncicantitruncated 7-orthoplex
steriruncicantitruncated 7-orthoplex | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,1,2,3,4{35,4} |
Coxeter-Dynkin diagrams | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Great cellated hecatonicosoctaexon (acronym: ) (Jonathan Bowers)[10]
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | 150px | 150px | 150px |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | 150px | 150px | 150px |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | 150px | 150px | |
Dihedral symmetry | [6] | [4] |
Notes
- ↑ Klitizing, (x3o3o3o3x3o4o - )
- ↑ Klitizing, (x3x3o3o3x3o4o - )
- ↑ Klitizing, (o3x3x3o3o3x4o - )
- ↑ Klitizing, (x3o3x3o3x3o4o - )
- ↑ Klitizing, (x3x3x3o3x3o4o - )
- ↑ Klitizing, (o3x3x3x3o3x4o - )
- ↑ Klitizing, (x3o3o3x3x3o4o - )
- ↑ Klitizing, (x3x3x3o3x3o4o - )
- ↑ Klitizing, (x3o3x3x3x3o4o - )
- ↑ Klitizing, (x3x3x3x3x3o4o - )
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- Richard Klitzing, 7D, uniform polytopes (polyexa)
External links
- Olshevsky, George, Cross polytope at Glossary for Hyperspace.
- Polytopes of Various Dimensions
- Multi-dimensional Glossary
Fundamental convex regular and uniform polytopes in dimensions 2–10 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Family | An | Bn | I2(p) / Dn | E6 / E7 / E8 / F4 / G2 | Hn | |||||||
Regular polygon | Triangle | Square | p-gon | Hexagon | Pentagon | |||||||
Uniform polyhedron | Tetrahedron | Octahedron • Cube | Demicube | Dodecahedron • Icosahedron | ||||||||
Uniform 4-polytope | 5-cell | 16-cell • Tesseract | Demitesseract | 24-cell | 120-cell • 600-cell | |||||||
Uniform 5-polytope | 5-simplex | 5-orthoplex • 5-cube | 5-demicube | |||||||||
Uniform 6-polytope | 6-simplex | 6-orthoplex • 6-cube | 6-demicube | 122 • 221 | ||||||||
Uniform 7-polytope | 7-simplex | 7-orthoplex • 7-cube | 7-demicube | 132 • 231 • 321 | ||||||||
Uniform 8-polytope | 8-simplex | 8-orthoplex • 8-cube | 8-demicube | 142 • 241 • 421 | ||||||||
Uniform 9-polytope | 9-simplex | 9-orthoplex • 9-cube | 9-demicube | |||||||||
Uniform 10-polytope | 10-simplex | 10-orthoplex • 10-cube | 10-demicube | |||||||||
Uniform n-polytope | n-simplex | n-orthoplex • n-cube | n-demicube | 1k2 • 2k1 • k21 | n-pentagonal polytope | |||||||
Topics: Polytope families • Regular polytope • List of regular polytopes and compounds |