Semisimple algebraic group

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

In mathematics, especially in the areas of abstract algebra and algebraic geometry studying linear algebraic groups, a semisimple algebraic group is a type of matrix group which behaves much like a semisimple Lie algebra or semisimple ring.

Definition

A linear algebraic group is called semisimple if and only if the (solvable) radical of the identity component is trivial.

Equivalently, a semisimple linear algebraic group has no non-trivial connected, normal, abelian subgroups.

Examples

Properties

Lua error in package.lua at line 80: module 'strict' not found.

References

  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.


<templatestyles src="Asbox/styles.css"></templatestyles>