Semisimple algebraic group
From Infogalactic: the planetary knowledge core
In mathematics, especially in the areas of abstract algebra and algebraic geometry studying linear algebraic groups, a semisimple algebraic group is a type of matrix group which behaves much like a semisimple Lie algebra or semisimple ring.
Contents
Definition
A linear algebraic group is called semisimple if and only if the (solvable) radical of the identity component is trivial.
Equivalently, a semisimple linear algebraic group has no non-trivial connected, normal, abelian subgroups.
Examples
- Over an algebraically closed field , the special linear group is semisimple.
- Every direct sum of simple algebraic groups is semisimple.
Properties
Lua error in package.lua at line 80: module 'strict' not found.
References
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
<templatestyles src="Asbox/styles.css"></templatestyles>