Polynomial SOS
<templatestyles src="Module:Hatnote/styles.css"></templatestyles>
In mathematics, a form (i.e. a homogeneous polynomial) h(x) of degree 2m in the real n-dimensional vector x is sum of squares of forms (SOS) if and only if there exist forms of degree m such that
Explicit sufficient conditions for a form to be SOS have been found.[1][2] However every real nonnegative form can be approximated as closely as desired (in the -norm of its coefficient vector) by a sequence of forms
that are SOS.[3]
Contents
Square matricial representation (SMR)
To establish whether a form h(x) is SOS amounts to solving a convex optimization problem. Indeed, any h(x) can be written as
where is a vector containing a base for the forms of degree m in x (such as all monomials of degree m in x), the prime ′ denotes the transpose, H is any symmetric matrix satisfying
and is a linear parameterization of the linear space
The dimension of the vector is given by
whereas the dimension of the vector is given by
Then, h(x) is SOS if and only if there exists a vector such that
meaning that the matrix is positive-semidefinite. This is a linear matrix inequality (LMI) feasibility test, which is a convex optimization problem. The expression
was introduced in [4] with the name square matricial representation (SMR) in order to establish whether a form is SOS via an LMI. This representation is also known as Gram matrix.[5]
Examples
- Consider the form of degree 4 in two variables
. We have
- Since there exists α such that
, namely
, it follows that h(x) is SOS.
- Consider the form of degree 4 in three variables
. We have
- Since
for
, it follows that h(x) is SOS.
Generalizations
Matrix SOS
A matrix form F(x) (i.e., a matrix whose entries are forms) of dimension r and degree 2m in the real n-dimensional vector x is SOS if and only if there exist matrix forms of degree m such that
Matrix SMR
To establish whether a matrix form F(x) is SOS amounts to solving a convex optimization problem. Indeed, similarly to the scalar case any F(x) can be written according to the SMR as
where is the Kronecker product of matrices, H is any symmetric matrix satisfying
and is a linear parameterization of the linear space
The dimension of the vector is given by
Then, F(x) is SOS if and only if there exists a vector such that the following LMI holds:
The expression was introduced in [6] in order to establish whether a matrix form is SOS via an LMI.
Noncommutative polynomial SOS
Consider the free algebra R⟨X⟩ generated by the n noncommuting letters X = (X1,...,Xn) and equipped with the involution T, such that T fixes R and X1,...,Xn and reverse words formed by X1,...,Xn. By analogy with the commutative case, the noncommutative symmetric polynomials f are the noncommutative polynomials of the form f=fT. When any real matrix of any dimension r x r is evaluated at a symmetric noncommutative polynomial f results in a positive semi-definite matrix, f is said to be matrix-positive.
A noncommutative polynomial is SOS if there exists noncommutative polynomials such that
Surprisingly, in the noncommutative scenario a noncommutative polynomial is SoS if and only if is matrix-positive.[7] Moreover, there exist algorithms available to decompose matrix-positive polynomials in sum of squares of noncommutative polynomials.[8]
References
<templatestyles src="Reflist/styles.css" />
Cite error: Invalid <references>
tag; parameter "group" is allowed only.
<references />
, or <references group="..." />
See also
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.