Mononegavirales
Order Mononegavirales | |
---|---|
Virus classification | |
Group: |
Group V ((−)ssRNA)
|
Order: |
Mononegavirales
|
Families | |
Lua error in Module:Taxonbar/candidate at line 22: attempt to index field 'wikibase' (a nil value).
The order Mononegavirales is the taxonomic home of numerous related viruses. Members of the order that are commonly known are, for instance, Ebola virus, human respiratory syncytial virus, measles virus, mumps virus, Nipah virus, and rabies virus. All of these viruses cause significant disease in humans. Many very important pathogens of nonhuman animals and plants are also members of this order.
Contents
Use of term
The order Mononegavirales is a virological taxon that was created in 1991[1][2] and emended in 1995,[3] 1997,[4] 2000,[5] 2005,[6] and 2011.[7] The name Mononegavirales is derived from the Greek adjective μóνος [monos] (alluding to the monopartite and single-stranded genomes of most mononegaviruses), the Latin verb negare (alluding to the negative polarity of these genomes), and the taxonomic suffix -virales (denoting a viral order).[8] The order currently includes the five virus families Bornaviridae, Filoviridae, Nyamiviridae, Paramyxoviridae, and Rhabdoviridae.[7][8][9][10]
Note
Mononegavirales is pronounced ˌmɒnəˌnɛgəviː’rɑ:lɨz (IPA) or mo-nuh-ne-guh-vee-rah-liz in English phonetic notation.[8] According to the rules for taxon naming established by the International Committee on Taxonomy of Viruses (ICTV), the name Mononegavirales is always to be capitalized, italicized, and never abbreviated.[7] The names of its physical members (mononegaviruses/mononegavirads) are to be written in lower case, are not italicized and used without articles.[7][8]
Order inclusion criteria
A virus is a member of the order Mononegavirales if[7][8]
- its genome is a linear, nonsegmented, single-stranded, non-infectious RNA of negative polarity; possesses inverse-complementary 3' and 5' termini; is not covalently linked to a protein
- its genome has the characteristic gene order 3'-UTR–core protein genes–envelope protein genes–RNA-dependent RNA polymerase gene–5'-UTR
- it produces 5–10 distinct mRNAs from its genome via polar sequential transcription from a single promoter located at the 3' end of the genome; mRNAs are 5' capped and polyadenylated
- it replicates by synthesizing complete antigenomes
- it forms infectious helical ribonucleocapsids as the templates for the synthesis of mRNAs, antigenomes, and genomes
- it encodes an RNA-dependent RNA polymerase (RdRp) that is highly homologous to those of other mononegaviruses
- it forms enveloped virions with a molecular mass of 300–1,000×106; an S20W of 550–>1,045; and a buoyant density in CsCl of 1.18–1.22 g/cm3
Order organization
The order includes four accepted families that include numerous genera, consisting of many different species. Subfamilies have only been established for the mononegavirus family Paramyxoviridae. The order has expanded considerably during recent years due to the discovery of many novel agents that were found to be phylogenetically diverse from already known mononegaviruses. Novel taxa (genera and/or species) had to be proposed, some of which have by now been accepted by the ICTV, and others that are in various stages of the suggestion/proposal/consideration process. The table below provides an overview of the current composition of the order. Note that this table only lists taxa (concepts), but not their virus members (physical entities).
Table legend: "*" denotes type species; "suggested" refers to taxa that have been suggested by individual researchers but that have not been formally proposed to the ICTV; "proposed" refers to taxa that have been formally proposed; and "accepted" refers to taxa that have been accepted by the Executive Committee of the ICTV but that have yet to be ratified. Only accepted and ratified taxa are italicized, whereas suggested and proposed taxa are not and placed in quotation marks.
Life cycle
The mononegavirus life cycle begins with virion attachment to specific cell-surface receptors, followed by fusion of the virion envelope with cellular membranes and the concomitant release of the virus nucleocapsid into the cytosol. The virus RdRp partially uncoats the nucleocapsid and transcribes the genes into positive-stranded mRNAs, which are then translated into structural and nonstructural proteins. Mononegavirus RdRps bind to a single promoter located at the 3' end of the genome. Transcription either terminates after a gene or continues to the next gene downstream. This means that genes close to the 3' end of the genome are transcribed in the greatest abundance, whereas those toward the 5' end are least likely to be transcribed. The gene order is therefore a simple but effective form of transcriptional regulation. The most abundant protein produced is the nucleoprotein, whose concentration in the cell determines when the RdRp switches from gene transcription to genome replication. Replication results in full-length, positive-stranded antigenomes that are in turn transcribed into negative-stranded virus progeny genome copies. Newly synthesized structural proteins and genomes self-assemble and accumulate near the inside of the cell membrane. Virions bud off from the cell, gaining their envelopes from the cellular membrane they bud from. The mature progeny particles then infect other cells to repeat the cycle.[6]
Paleovirology
Mononegaviruses have a history that dates back several tens of million of years. Mononegavirus "fossils" have been discovered in the form of mononegavirus genes or gene fragments integrated into mammalian genomes. For instance, bornavirus gene "fossils" have been detected in the genomes of bats, fish, hyraxes, marsupials, primates, rodents, ruminants, and elephants.[28][29][30] Filovirus gene "fossils" have been detected in the genomes of bats, rodents, shrews, tenrecs, and marsupials.[29][30][31] A Midway virus "fossil" was found in the genome of zebrafish.[29] Finally, rhabdovirus "fossils" were found in the genomes of mosquitoes, ticks, and plants.[30][32][33]
References
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ 6.0 6.1 Lua error in package.lua at line 80: module 'strict' not found.
- ↑ 7.0 7.1 7.2 7.3 7.4 Lua error in package.lua at line 80: module 'strict' not found.
- ↑ 8.0 8.1 8.2 8.3 8.4 Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ 14.0 14.1 14.2 Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ 16.0 16.1 16.2 Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ 22.00 22.01 22.02 22.03 22.04 22.05 22.06 22.07 22.08 22.09 22.10 22.11 22.12 22.13 22.14 22.15 22.16 22.17 22.18 22.19 22.20 22.21 22.22 22.23 22.24 22.25 22.26 22.27 22.28 22.29 22.30 22.31 22.32 22.33 22.34 22.35 22.36 22.37 22.38 22.39 22.40 22.41 22.42 22.43 Lua error in package.lua at line 80: module 'strict' not found.
- ↑ 23.0 23.1 23.2 Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ 25.00 25.01 25.02 25.03 25.04 25.05 25.06 25.07 25.08 25.09 25.10 25.11 Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ 27.0 27.1 Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ 29.0 29.1 29.2 Lua error in package.lua at line 80: module 'strict' not found.
- ↑ 30.0 30.1 30.2 Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.