Modulus and characteristic of convexity

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

In mathematics, the modulus of convexity and the characteristic of convexity are measures of "how convex" the unit ball in a Banach space is. In some sense, the modulus of convexity has the same relationship to the ε-δ definition of uniform convexity as the modulus of continuity does to the ε-δ definition of continuity.

Definitions

The modulus of convexity of a Banach space (X, || ||) is the function δ : [0, 2] → [0, 1] defined by

\delta (\varepsilon) = \inf \left\{ 1 - \left\| \frac{x + y}{2} \right\| \,:\,  x, y \in S, \| x - y \| \geq \varepsilon \right\},

where S denotes the unit sphere of (X, || ||). In the definition of δ(ε), one can as well take the infimum over all vectors x, y in X such that ǁxǁ, ǁyǁ ≤ 1 and ǁxyǁ ≥ ε.[1]

The characteristic of convexity of the space (X, || ||) is the number ε0 defined by

\varepsilon_{0} = \sup \{ \varepsilon \,:\, \delta(\varepsilon) = 0 \}.

These notions are implicit in the general study of uniform convexity by J. A. Clarkson (Clarkson (1936); this is the same paper containing the statements of Clarkson's inequalities). The term "modulus of convexity" appears to be due to M. M. Day.[2]

Properties

  • The modulus of convexity, δ(ε), is a non-decreasing function of ε, and the quotient δ(ε) / ε is also non-decreasing on (0, 2].[3] The modulus of convexity need not itself be a convex function of ε.[4] However, the modulus of convexity is equivalent to a convex function in the following sense:[5] there exists a convex function δ1(ε) such that
\delta(\varepsilon / 2) \le \delta_1(\varepsilon) \le \delta(\varepsilon), \quad \varepsilon \in [0, 2].
  • The normed space (X, ǁ ⋅ ǁ) is uniformly convex if and only if its characteristic of convexity ε0 is equal to 0, i.e., if and only if δ(ε) > 0 for every ε > 0.
  • The Banach space (X, ǁ ⋅ ǁ) is a strictly convex space (i.e., the boundary of the unit ball B contains no line segments) if and only if δ(2) = 1, i.e., if only antipodal points (of the form x and y = −x) of the unit sphere can have distance equal to 2.
  • When X is uniformly convex, it admits an equivalent norm with power type modulus of convexity.[6] Namely, there exists q ≥ 2 and a constant c > 0 such that
\delta(\varepsilon) \ge c \, \varepsilon^q, \quad \varepsilon \in [0, 2].

See also

Notes

<templatestyles src="Reflist/styles.css" />

Cite error: Invalid <references> tag; parameter "group" is allowed only.

Use <references />, or <references group="..." />

References

  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Fuster, Enrique Llorens. Some moduli and constants related to metric fixed point theory. Handbook of metric fixed point theory, 133-175, Kluwer Acad. Publ., Dordrecht, 2001. MR 1904276
  • Lindenstrauss, Joram and Benyamini, Yoav. Geometric nonlinear functional analysis Colloquium publications, 48. American Mathematical Society.
  • Lua error in package.lua at line 80: module 'strict' not found..
  • Vitali D. Milman. Geometric theory of Banach spaces II. Geometry of the unit sphere. Uspechi Mat. Nauk, vol. 26, no. 6, 73-149, 1971; Russian Math. Surveys, v. 26 6, 80-159.