Fiber

From Infogalactic: the planetary knowledge core
(Redirected from Man-made fiber)
Jump to: navigation, search

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

Lua error in package.lua at line 80: module 'strict' not found.

A bundle of optical fibers

Fiber or fibre (from the Latin fibra[1]) is a natural or synthetic substance that is significantly longer than it is wide.[2] Fibers are often used in the manufacture of other materials. The strongest engineering materials often incorporate fibers, for example carbon fiber and ultra-high-molecular-weight polyethylene.

Synthetic fibers can often be produced very cheaply and in large amounts compared to natural fibers, but for clothing natural fibers can give some benefits, such as comfort, over their synthetic counterparts.

<templatestyles src="Template:TOC limit/styles.css" />

Natural fibers

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

Natural fibers develop or occur in the fiber shape, and include those produced by plants, animals, and geological processes.[2] They can be classified according to their origin:

Man-made fibers

Man-made fibers or chemical fibers are fibers whose chemical composition, structure, and properties are significantly modified during the manufacturing process.[4] Man-made fibers consist of regenerated fibers and synthetic fibers.

Semi-synthetic fibers

Semi-synthetic fibers are made from raw materials with naturally long-chain polymer structure and are only modified and partially degraded by chemical processes, in contrast to completely synthetic fibers such as nylon (polyamide) or dacron (polyester), which the chemist synthesizes from low-molecular weight compounds by polymerization (chain-building) reactions. The earliest semi-synthetic fiber is the cellulose regenerated fiber, rayon.[5] Most semi-synthetic fibers are cellulose regenerated fibers.

Cellulose regenerated fibers

Cellulose fibers are a subset of man-made fibers, regenerated from natural cellulose. The cellulose comes from various sources: rayon from tree wood fiber, Modal from beech trees, bamboo fiber from bamboo, seacell from seaweed, etc. In the production of these fibers, the cellulose is reduced to a fairly pure form as a viscous mass and formed into fibers by extrusion through spinnerets. Therefore, the manufacturing process leaves few characteristics distinctive of the natural source material in the finished product.

Some examples are:

Historically, cellulose diacetate and -triacetate were classified under the term rayon, but are now considered distinct materials.

Synthetic fibers

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

Synthetic come entirely from synthetic materials such as petrochemicals, unlike those man-made fibers derived from such natural substances as cellulose or protein.[6]

Fiber classification in reinforced plastics falls into two classes: (i) short fibers, also known as discontinuous fibers, with a general aspect ratio (defined as the ratio of fiber length to diameter) between 20 to 60, and (ii) long fibers, also known as continuous fibers, the general aspect ratio is between 200 to 500.[7]

Metallic fibers

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

Metallic fibers can be drawn from ductile metals such as copper, gold or silver and extruded or deposited from more brittle ones, such as nickel, aluminum or iron. See also Stainless steel fibers.

Carbon fiber

Carbon fibers are often based on oxydized and via pyrolysis carbonized polymers like PAN, but the end product is almost pure carbon.

Silicon carbide fiber

Silicon carbide fibers, where the basic polymers are not hydrocarbons but polymers, where about 50% of the carbon atoms are replaced by silicon atoms, so-called poly-carbo-silanes. The pyrolysis yields an amorphous silicon carbide, including mostly other elements like oxygen, titanium, or aluminium, but with mechanical properties very similar to those of carbon fibers.

Fiberglass

Fiberglass, made from specific glass, and optical fiber, made from purified natural quartz, are also man-made fibers that come from natural raw materials, silica fiber, made from sodium silicate (water glass) and basalt fiber made from melted basalt.

Mineral fibers

Mineral fibers can be particularly strong because they are formed with a low number of surface defects, asbestos is a common one.[8]

Polymer fibers

  • Polymer fibers are a subset of man-made fibers, which are based on synthetic chemicals (often from petrochemical sources) rather than arising from natural materials by a purely physical process. These fibers are made from:
    • polyamide nylon
    • PET or PBT polyester
    • phenol-formaldehyde (PF)
    • polyvinyl chloride fiber (PVC) vinyon
    • polyolefins (PP and PE) olefin fiber
    • acrylic polyesters, pure polyester PAN fibers are used to make carbon fiber by roasting them in a low oxygen environment. Traditional acrylic fiber is used more often as a synthetic replacement for wool. Carbon fibers and PF fibers are noted as two resin-based fibers that are not thermoplastic, most others can be melted.
    • aromatic polyamids (aramids) such as Twaron, Kevlar and Nomex thermally degrade at high temperatures and do not melt. These fibers have strong bonding between polymer chains
    • polyethylene (PE), eventually with extremely long chains / HMPE (e.g. Dyneema or Spectra).
    • Elastomers can even be used, e.g. spandex although urethane fibers are starting to replace spandex technology.
    • polyurethane fiber
    • Elastolefin
  • Coextruded fibers have two distinct polymers forming the fiber, usually as a core-sheath or side-by-side. Coated fibers exist such as nickel-coated to provide static elimination, silver-coated to provide anti-bacterial properties and aluminum-coated to provide RF deflection for radar chaff. Radar chaff is actually a spool of continuous glass tow that has been aluminum coated. An aircraft-mounted high speed cutter chops it up as it spews from a moving aircraft to confuse radar signals.

Microfibers

Microfibers in textiles refer to sub-denier fiber (such as polyester drawn to 0.5 denier). Denier and Dtex are two measurements of fiber yield based on weight and length. If the fiber density is known, you also have a fiber diameter, otherwise it is simpler to measure diameters in micrometers. Microfibers in technical fibers refer to ultra fine fibers (glass or meltblown thermoplastics) often used in filtration. Newer fiber designs include extruding fiber that splits into multiple finer fibers. Most synthetic fibers are round in cross-section, but special designs can be hollow, oval, star-shaped or trilobal. The latter design provides more optically reflective properties. Synthetic textile fibers are often crimped to provide bulk in a woven, non woven or knitted structure. Fiber surfaces can also be dull or bright. Dull surfaces reflect more light while bright tends to transmit light and make the fiber more transparent.

Very short and/or irregular fibers have been called fibrils. Natural cellulose, such as cotton or bleached kraft, show smaller fibrils jutting out and away from the main fiber structure.[9]

See also

References

  1. Lua error in package.lua at line 80: module 'strict' not found.
  2. 2.0 2.1 Lua error in package.lua at line 80: module 'strict' not found.
  3. Lua error in package.lua at line 80: module 'strict' not found.
  4. Lua error in package.lua at line 80: module 'strict' not found.
  5. Lua error in package.lua at line 80: module 'strict' not found.
  6. Lua error in package.lua at line 80: module 'strict' not found.
  7. Serope Kalpakjian, Steven R Schmid. "Manufacturing Engineering and Technology". International edition. 4th Ed. Prentice Hall, Inc. 2001. ISBN 0-13-017440-8.
  8. Lua error in package.lua at line 80: module 'strict' not found.
  9. Hans-J. Koslowski. "Man-Made Fibers Dictionary". Second edition. Deutscher Fachverlag. 2009 ISBN 3-86641-163-4

Lua error in package.lua at line 80: module 'strict' not found.