List of integrals of trigonometric functions

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

Lua error in package.lua at line 80: module 'strict' not found. The following is a list of integrals (antiderivative functions) of trigonometric functions. For antiderivatives involving both exponential and trigonometric functions, see List of integrals of exponential functions. For a complete list of antiderivative functions, see Lists of integrals. For the special antiderivatives involving trigonometric functions, see Trigonometric integral.

Generally, if the function \sin(x) is any trigonometric function, and \cos(x) is its derivative,

\int a\cdot\cos(nx)\;\mathrm{d}x = \frac{a\cdot\sin(nx)}{n}+C

In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration.

Integrands involving only sine

\int\sin(ax)\;\mathrm{d}x = -\frac{1}{a}\cos(ax)+C


\int\sin^2(ax)\;\mathrm{d}x = \frac{x}{2} - \frac{\sin(2ax)}{4a} +C= \frac{x}{2} - \frac{\sin(ax)\cdot\cos(ax)}{2a} +C


\int\sin^3(ax)\;\mathrm{d}x = \frac{\cos(3ax)}{12a} - \frac{3\cos(ax)}{4a} +C


\int x\cdot\sin^2(ax)\;\mathrm{d}x = \frac{x^2}{4} - \frac{x\cdot\sin(2ax)}{4a} - \frac{\cos(2ax)}{8a^2} +C


\int x^2\cdot\sin^2(ax)\;\mathrm{d}x = \frac{x^3}{6} - \left(\frac{x^2}{4a} - \frac{1}{8a^3}\right)\sin(2ax) - \frac{x\cdot\cos(2ax)}{4a^2} +C


\int\sin(b_1x)\cdot\sin(b_2x)\;\mathrm{d}x = \frac{\sin\bigl((b_2-b_1)x\bigr)}{2(b_2-b_1)}-\frac{\sin\bigl(((b_1+b_2)x)\bigr)}{2(b_1+b_2)}+C \qquad\mbox{(for }|b_1|\neq|b_2|\mbox{)}


\int\sin^n(ax)\;\mathrm{d}x = -\frac{\sin^{n-1}(ax)\cos(ax)}{na} + \frac{n-1}{n}\cdot\int\sin^{n-2}(ax)\;\mathrm{d}x \qquad\mbox{(for }n>0\mbox{)}


\int\frac{\mathrm{d}x}{\sin(ax)} = -\frac{\ln\bigl(\bigl|\csc(ax)+\cot(ax)\bigr|\bigr)}{a}+C


\int\frac{\mathrm{d}x}{\sin^n(ax)} = \frac{\cos(ax)}{a(1-n)\sin^{n-1}(ax)}+\frac{n-2}{n-1}\cdot\int\frac{\mathrm{d}x}{\sin^{n-2}(ax)} \qquad\mbox{(for }n>1\mbox{)}


\int x\cdot\sin(ax)\;\mathrm{d}x = \frac{\sin(ax)}{a^2}-\frac{x\cdot\cos(ax)}{a}+C


\int x^n\cdot\sin(ax)\;\mathrm{d}x = -\frac{x^n\cdot\cos(ax)}{a}+\frac{n}{a}\cdot\int x^{n-1}\cdot\cos(ax)\;\mathrm{d}x =


{=\sum_{k=0}^{2k\le n} (-1)^{k+1}\cdot\frac{x^{n-2k}}{a^{2k+1}}\cdot\frac{n!}{(n-2k)!}\cdot\cos(ax) +\sum_{k=0}^{2k+1\le n}(-1)^k\cdot\frac{x^{n-(2k+1)}}{a^{2k+2}}\cdot\frac{n!}{(n-2k-1)!}\cdot\sin(ax) \qquad\mbox{(for }n>0\mbox{)}}



\int\frac{\sin(ax)}{x} \mathrm{d}x = \sum_{n=0}^\infty (-1)^n\frac{(ax)^{2n+1}}{(2n+1)\cdot (2n+1)!} +C


\int\frac{\sin(ax)}{x^n} \mathrm{d}x = -\frac{\sin(ax)}{(n-1)x^{n-1}} + \frac{a}{n-1}\cdot\int\frac{\cos(ax)}{x^{n-1}} \mathrm{d}x


\int\frac{\mathrm{d}x}{1\pm\sin(ax)} = \frac{\tan\left(\frac{ax}{2}\mp\frac{\pi}{4}\right)}{a}+C


\int\frac{x\;\mathrm{d}x}{1+\sin(ax)} = \frac{x\cdot\tan\left(\frac{ax}{2}-\frac{\pi}{4}\right)}{a}+\frac{\ln\bigl(\cos^2(\frac{ax}{2}-\frac{\pi}{4})\bigr)}{a^2}+C


\int\frac{x\;\mathrm{d}x}{1-\sin(ax)} = \frac{x\cdot\cot\left(\frac{\pi}{4}-\frac{ax}{2}\right)}{a}+\frac{\ln\bigl(\sin^2(\frac{\pi}{4}-\frac{ax}{2})\bigr)}{a^2}+C


\int\frac{\sin(ax)\;\mathrm{d}x}{1\pm\sin(ax)} = \pm x+\frac{\tan\left(\frac{\pi}{4}\mp\frac{ax}{2}\right)}{a}+C

Integrands involving only cosine

\int\cos(ax)\;\mathrm{d}x = \frac{\sin(ax)}{a}+C


\int\cos^2(ax)\;\mathrm{d}x = \frac{x}{2} + \frac{\sin(2ax)}{4a} +C = \frac{x}{2} + \frac{\sin(ax)\cdot\cos(ax)}{2a} +C


{\int\cos^n(ax)\;\mathrm{d}x = \frac{\cos^{n-1}(ax)\cdot\sin(ax)}{na} + \frac{n-1}{n}\cdot\int\cos^{n-2}(ax)\;\mathrm{d}x \qquad\mbox{(for }n>0\mbox{)}}


\int x\cdot\cos(ax)\;\mathrm{d}x = \frac{\cos(ax)}{a^2} + \frac{x\cdot\sin(ax)}{a}+C


\int x^2\cdot\cos^2(ax)\;\mathrm{d}x = \frac{x^3}{6} + \left(\frac{x^2}{4a}-\frac{1}{8a^3}\right)\sin(2ax) + \frac{x\cdot\cos(2ax)}{4a^2} +C


\int x^n\cdot\cos(ax)\;\mathrm{d}x = \frac{x^n\cdot\sin(ax)}{a} - \frac{n}{a}\cdot\int x^{n-1}\cdot\sin(ax)\;\mathrm{d}x=


{= \sum_{k=0}^{2k+1\le n}(-1)^k\cdot\frac{x^{n-(2k+1)}}{a^{2k+2}}\cdot\frac{n!}{(n-2k-1)!}\cdot\cos(ax) +\sum_{k=0}^{2k\le n}(-1)^k\cdot\frac{x^{n-2k}}{a^{2k+1}}\cdot\frac{n!}{(n-2k)!}\cdot\sin(ax)}


\int\frac{\cos(ax)}{x}\;\mathrm{d}x = \ln\bigl(|ax|\bigr)+\sum_{k=1}^\infty (-1)^k\cdot\frac{(ax)^{2k}}{2k\cdot(2k)!}+C


\int\frac{\cos(ax)}{x^n}\;\mathrm{d}x = -\frac{\cos(ax)}{(n-1)x^{n-1}}-\frac{a}{n-1}\cdot\int\frac{\sin(ax)}{x^{n-1}}\;\mathrm{d}x \qquad\mbox{(for }n\ne 1\mbox{)}


\int\frac{\mathrm{d}x}{\cos(ax)} = \frac{\ln\bigl(|\tan(\frac{ax}{2}+\frac{\pi}{4})|\bigr)}{a}+C


\int\frac{\mathrm{d}x}{\cos^n(ax)} = \frac{\sin(ax)}{a(n-1)\cdot\cos^{n-1}(ax)} + \frac{n-2}{n-1}\cdot\int\frac{\mathrm{d}x}{\cos^{n-2}(ax)} \qquad\mbox{(for }n>1\mbox{)}


\int\frac{\mathrm{d}x}{1+\cos(ax)} = \frac{\tan(\frac{ax}{2})}{a}+C


\int\frac{\mathrm{d}x}{1-\cos(ax)} = -\frac{\cot(\frac{ax}{2})}{a}+C


\int\frac{x\;\mathrm{d}x}{1+\cos(ax)} = \frac{x\cdot\tan(\frac{ax}{2})}{a} + \frac{\ln\bigl(\cos^2(\frac{ax}{2})\bigr)}{a^2}+C


\int\frac{x\;\mathrm{d}x}{1-\cos(ax)} = -\frac{x\cdot\cot(\frac{ax}{2})}{a}+\frac{\ln\bigl(\sin^2(\frac{ax}{2})\bigr)}{a^2}+C


\int\frac{\cos(ax)}{1+\cos ax}\;\mathrm{d}x = x-\frac{\tan(\frac{ax}{2})}{a}+C


\int\frac{\cos(ax)}{1-\cos(ax)}\;\mathrm{d}x = -x-\frac{\cot(\frac{ax}{2})}{a}+C


{\int\cos(a_1x)\cdot\cos(a_2x)\;\mathrm{d}x = \frac{\sin\bigl((a_2-a_1)x\bigr)}{2(a_2-a_1)}+\frac{\sin\bigl((a_2+a_1)x\bigr)}{2(a_2+a_1)}+C} \qquad\mbox{(for }|a_1|\ne |a_2|\mbox{)}

Integrands involving only tangent

\int\tan ax\;\mathrm{d}x = -\frac{1}{a}\ln|\cos ax|+C = \frac{1}{a}\ln|\sec ax|+C\,\!
\int \tan^2{x} \, \mathrm{d}x = \tan{x} - x +C
\int\tan^n ax\;\mathrm{d}x = \frac{1}{a(n-1)}\tan^{n-1} ax-\int\tan^{n-2} ax\;\mathrm{d}x \qquad\mbox{(for }n\neq 1\mbox{)}\,\!
\int\frac{\mathrm{d}x}{q \tan ax + p} = \frac{1}{p^2 + q^2}(px + \frac{q}{a}\ln|q\sin ax + p\cos ax|)+C \qquad\mbox{(for }p^2 + q^2\neq 0\mbox{)}\,\!
\int\frac{\mathrm{d}x}{\tan ax + 1} = \frac{x}{2} + \frac{1}{2a}\ln|\sin ax + \cos ax|+C\,\!
\int\frac{\mathrm{d}x}{\tan ax - 1} = -\frac{x}{2} + \frac{1}{2a}\ln|\sin ax - \cos ax|+C\,\!
\int\frac{\tan ax\;\mathrm{d}x}{\tan ax + 1} = \frac{x}{2} - \frac{1}{2a}\ln|\sin ax + \cos ax|+C\,\!
\int\frac{\tan ax\;\mathrm{d}x}{\tan ax - 1} = \frac{x}{2} + \frac{1}{2a}\ln|\sin ax - \cos ax|+C\,\!

Integrands involving only secant

See Integral of the secant function.
\int \sec{ax} \, \mathrm{d}x = \frac{1}{a}\ln{\left| \sec{ax} + \tan{ax}\right|}+C
\int \sec^2{x} \, \mathrm{d}x = \tan{x}+C
\int \sec^3{x} \, dx = \frac{1}{2}\sec x \tan x + \frac{1}{2}\ln|\sec x + \tan x| + C.


\int \sec^n{ax} \, \mathrm{d}x = \frac{\sec^{n-2}{ax} \tan {ax}}{a(n-1)} \,+\, \frac{n-2}{n-1}\int \sec^{n-2}{ax} \, \mathrm{d}x \qquad \mbox{ (for }n \ne 1\mbox{)}\,\!
\int \frac{\mathrm{d}x}{\sec{x} + 1} = x - \tan{\frac{x}{2}}+C
\int \frac{\mathrm{d}x}{\sec{x} - 1} = - x - \cot{\frac{x}{2}}+C


Integrands involving only cosecant

\int \csc{ax} \, \mathrm{d}x= -\frac{1}{a}\ln{\left| \csc{ax}+\cot{ax}\right|}+C
\int \csc^2{x} \, \mathrm{d}x = -\cot{x}+C
\int \csc^3{x} \, dx = -\frac{1}{2}\csc x \cot x - \frac{1}{2}\ln|\csc x + \cot x| + C.
\int \csc^n{ax} \, \mathrm{d}x = -\frac{\csc^{n-2}{ax} \cot{ax}}{a(n-1)} \,+\, \frac{n-2}{n-1}\int \csc^{n-2}{ax} \, \mathrm{d}x \qquad \mbox{ (for }n \ne 1\mbox{)}\,\!
\int \frac{\mathrm{d}x}{\csc{x} + 1} = x - \frac{2}{\cot{\frac{x}{2}}+1}+C
\int \frac{\mathrm{d}x}{\csc{x} - 1} = - x + \frac{2}{\cot{\frac{x}{2}}-1}+C

Integrands involving only cotangent

\int\cot ax\;\mathrm{d}x = \frac{1}{a}\ln|\sin ax|+C\,\!
\int\cot^n ax\;\mathrm{d}x = -\frac{1}{a(n-1)}\cot^{n-1} ax - \int\cot^{n-2} ax\;\mathrm{d}x \qquad\mbox{(for }n\neq 1\mbox{)}\,\!
\int\frac{\mathrm{d}x}{1 + \cot ax} = \int\frac{\tan ax\;\mathrm{d}x}{\tan ax+1}\,\!
\int\frac{\mathrm{d}x}{1 - \cot ax} = \int\frac{\tan ax\;\mathrm{d}x}{\tan ax-1}\,\!

Integrands involving both sine and cosine

\int\frac{\mathrm{d}x}{\cos ax\pm\sin ax} = \frac{1}{a\sqrt{2}}\ln\left|\tan\left(\frac{ax}{2}\pm\frac{\pi}{8}\right)\right|+C
\int\frac{\mathrm{d}x}{(\cos ax\pm\sin ax)^2} = \frac{1}{2a}\tan\left(ax\mp\frac{\pi}{4}\right)+C
\int\frac{\mathrm{d}x}{(\cos x + \sin x)^n} = \frac{1}{n-1}\left(\frac{\sin x - \cos x}{(\cos x + \sin x)^{n - 1}} - 2(n - 2)\int\frac{\mathrm{d}x}{(\cos x + \sin x)^{n-2}} \right)
\int\frac{\cos ax\;\mathrm{d}x}{\cos ax + \sin ax} = \frac{x}{2} + \frac{1}{2a}\ln\left|\sin ax + \cos ax\right|+C
\int\frac{\cos ax\;\mathrm{d}x}{\cos ax - \sin ax} = \frac{x}{2} - \frac{1}{2a}\ln\left|\sin ax - \cos ax\right|+C
\int\frac{\sin ax\;\mathrm{d}x}{\cos ax + \sin ax} = \frac{x}{2} - \frac{1}{2a}\ln\left|\sin ax + \cos ax\right|+C
\int\frac{\sin ax\;\mathrm{d}x}{\cos ax - \sin ax} = -\frac{x}{2} - \frac{1}{2a}\ln\left|\sin ax - \cos ax\right|+C
\int\frac{\cos ax\;\mathrm{d}x}{\sin ax(1+\cos ax)} = -\frac{1}{4a}\tan^2\frac{ax}{2}+\frac{1}{2a}\ln\left|\tan\frac{ax}{2}\right|+C
\int\frac{\cos ax\;\mathrm{d}x}{\sin ax(1-\cos ax)} = -\frac{1}{4a}\cot^2\frac{ax}{2}-\frac{1}{2a}\ln\left|\tan\frac{ax}{2}\right|+C
\int\frac{\sin ax\;\mathrm{d}x}{\cos ax(1+\sin ax)} = \frac{1}{4a}\cot^2\left(\frac{ax}{2}+\frac{\pi}{4}\right)+\frac{1}{2a}\ln\left|\tan\left(\frac{ax}{2}+\frac{\pi}{4}\right)\right|+C
\int\frac{\sin ax\;\mathrm{d}x}{\cos ax(1-\sin ax)} = \frac{1}{4a}\tan^2\left(\frac{ax}{2}+\frac{\pi}{4}\right)-\frac{1}{2a}\ln\left|\tan\left(\frac{ax}{2}+\frac{\pi}{4}\right)\right|+C
\int\sin ax\cos ax\;\mathrm{d}x = -\frac{1}{2a}\cos^2 ax +C\,\!
\int\sin a_1x\cos a_2x\;\mathrm{d}x = -\frac{\cos((a_1-a_2)x)}{2(a_1-a_2)} -\frac{\cos((a_1+a_2)x)}{2(a_1+a_2)} +C\qquad\mbox{(for }|a_1|\neq|a_2|\mbox{)}\,\!
\int\sin^n ax\cos ax\;\mathrm{d}x = \frac{1}{a(n+1)}\sin^{n+1} ax +C\qquad\mbox{(for }n\neq -1\mbox{)}\,\!
\int\sin ax\cos^n ax\;\mathrm{d}x = -\frac{1}{a(n+1)}\cos^{n+1} ax +C\qquad\mbox{(for }n\neq -1\mbox{)}\,\!
\int\sin^n ax\cos^m ax\;\mathrm{d}x = -\frac{\sin^{n-1} ax\cos^{m+1} ax}{a(n+m)}+\frac{n-1}{n+m}\int\sin^{n-2} ax\cos^m ax\;\mathrm{d}x  \qquad\mbox{(for }m,n>0\mbox{)}\,\!
also: \int\sin^n ax\cos^m ax\;\mathrm{d}x = \frac{\sin^{n+1} ax\cos^{m-1} ax}{a(n+m)} + \frac{m-1}{n+m}\int\sin^n ax\cos^{m-2} ax\;\mathrm{d}x \qquad\mbox{(for }m,n>0\mbox{)}\,\!
\int\frac{\mathrm{d}x}{\sin ax\cos ax} = \frac{1}{a}\ln\left|\tan ax\right|+C
\int\frac{\mathrm{d}x}{\sin ax\cos^n ax} = \frac{1}{a(n-1)\cos^{n-1} ax}+\int\frac{\mathrm{d}x}{\sin ax\cos^{n-2} ax} \qquad\mbox{(for }n\neq 1\mbox{)}\,\!
\int\frac{\mathrm{d}x}{\sin^n ax\cos ax} = -\frac{1}{a(n-1)\sin^{n-1} ax}+\int\frac{\mathrm{d}x}{\sin^{n-2} ax\cos ax} \qquad\mbox{(for }n\neq 1\mbox{)}\,\!
\int\frac{\sin ax\;\mathrm{d}x}{\cos^n ax} = \frac{1}{a(n-1)\cos^{n-1} ax} +C\qquad\mbox{(for }n\neq 1\mbox{)}\,\!
\int\frac{\sin^2 ax\;\mathrm{d}x}{\cos ax} = -\frac{1}{a}\sin ax+\frac{1}{a}\ln\left|\tan\left(\frac{\pi}{4}+\frac{ax}{2}\right)\right|+C
\int\frac{\sin^2 ax\;\mathrm{d}x}{\cos^n ax} = \frac{\sin ax}{a(n-1)\cos^{n-1}ax}-\frac{1}{n-1}\int\frac{\mathrm{d}x}{\cos^{n-2}ax} \qquad\mbox{(for }n\neq 1\mbox{)}\,\!
\int\frac{\sin^n ax\;\mathrm{d}x}{\cos ax} = -\frac{\sin^{n-1} ax}{a(n-1)} + \int\frac{\sin^{n-2} ax\;\mathrm{d}x}{\cos ax} \qquad\mbox{(for }n\neq 1\mbox{)}\,\!
\int\frac{\sin^n ax\;\mathrm{d}x}{\cos^m ax} = \frac{\sin^{n+1} ax}{a(m-1)\cos^{m-1} ax}-\frac{n-m+2}{m-1}\int\frac{\sin^n ax\;\mathrm{d}x}{\cos^{m-2} ax} \qquad\mbox{(for }m\neq 1\mbox{)}\,\!
also: \int\frac{\sin^n ax\;\mathrm{d}x}{\cos^m ax} = -\frac{\sin^{n-1} ax}{a(n-m)\cos^{m-1} ax}+\frac{n-1}{n-m}\int\frac{\sin^{n-2} ax\;\mathrm{d}x}{\cos^m ax} \qquad\mbox{(for }m\neq n\mbox{)}\,\!
also: \int\frac{\sin^n ax\;\mathrm{d}x}{\cos^m ax} = \frac{\sin^{n-1} ax}{a(m-1)\cos^{m-1} ax}-\frac{n-1}{m-1}\int\frac{\sin^{n-2} ax\;\mathrm{d}x}{\cos^{m-2} ax} \qquad\mbox{(for }m\neq 1\mbox{)}\,\!
\int\frac{\cos ax\;\mathrm{d}x}{\sin^n ax} = -\frac{1}{a(n-1)\sin^{n-1} ax} +C\qquad\mbox{(for }n\neq 1\mbox{)}\,\!
\int\frac{\cos^2 ax\;\mathrm{d}x}{\sin ax} = \frac{1}{a}\left(\cos ax+\ln\left|\tan\frac{ax}{2}\right|\right) +C
\int\frac{\cos^2 ax\;\mathrm{d}x}{\sin^n ax} = -\frac{1}{n-1}\left(\frac{\cos ax}{a\sin^{n-1} ax}+\int\frac{\mathrm{d}x}{\sin^{n-2} ax}\right) \qquad\mbox{(for }n\neq 1\mbox{)}
\int\frac{\cos^n ax\;\mathrm{d}x}{\sin^m ax} = -\frac{\cos^{n+1} ax}{a(m-1)\sin^{m-1} ax} - \frac{n-m+2}{m-1}\int\frac{\cos^n ax\;\mathrm{d}x}{\sin^{m-2} ax} \qquad\mbox{(for }m\neq 1\mbox{)}\,\!
also: \int\frac{\cos^n ax\;\mathrm{d}x}{\sin^m ax} = \frac{\cos^{n-1} ax}{a(n-m)\sin^{m-1} ax} + \frac{n-1}{n-m}\int\frac{\cos^{n-2} ax\;\mathrm{d}x}{\sin^m ax} \qquad\mbox{(for }m\neq n\mbox{)}\,\!
also: \int\frac{\cos^n ax\;\mathrm{d}x}{\sin^m ax} = -\frac{\cos^{n-1} ax}{a(m-1)\sin^{m-1} ax} - \frac{n-1}{m-1}\int\frac{\cos^{n-2} ax\;\mathrm{d}x}{\sin^{m-2} ax} \qquad\mbox{(for }m\neq 1\mbox{)}\,\!

Integrands involving both sine and tangent

\int \sin ax \tan ax\;\mathrm{d}x = \frac{1}{a}(\ln|\sec ax + \tan ax| - \sin ax)+C\,\!
\int\frac{\tan^n ax\;\mathrm{d}x}{\sin^2 ax} = \frac{1}{a(n-1)}\tan^{n-1} (ax) +C\qquad\mbox{(for }n\neq 1\mbox{)}\,\!

Integrand involving both cosine and tangent

\int\frac{\tan^n ax\;\mathrm{d}x}{\cos^2 ax} = \frac{1}{a(n+1)}\tan^{n+1} ax +C\qquad\mbox{(for }n\neq -1\mbox{)}\,\!

Integrand involving both sine and cotangent

\int\frac{\cot^n ax\;\mathrm{d}x}{\sin^2 ax} = -\frac{1}{a(n+1)}\cot^{n+1} ax  +C\qquad\mbox{(for }n\neq -1\mbox{)}\,\!

Integrand involving both cosine and cotangent

\int\frac{\cot^n ax\;\mathrm{d}x}{\cos^2 ax} = \frac{1}{a(1-n)}\tan^{1-n} ax +C\qquad\mbox{(for }n\neq 1\mbox{)}\,\!

Integrand involving both secant and tangent

 \int\sec x \tan x\;\mathrm{d}x= \sec x + C

Integrals in a quarter period

\int_{{0}}^{{\frac{\pi}{2}}} \sin^n x \, dx = \int_{{0}}^{{\frac{\pi}{2}}} \cos^n x \, dx = \begin{cases}
\frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdots \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}, & \text{if }n\text{ is even} \\
\frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdots \frac{4}{5} \cdot \frac{2}{3} & \text{if }n\text{ is odd and more than 1}
\end{cases}

Integrals with symmetric limits

\int_{{-c}}^{{c}}\sin{x}\;\mathrm{d}x = 0 \!
\int_{{-c}}^{{c}}\cos {x}\;\mathrm{d}x = 2\int_{{0}}^{{c}}\cos {x}\;\mathrm{d}x = 2\int_{{-c}}^{{0}}\cos {x}\;\mathrm{d}x = 2\sin {c} \!
\int_{{-c}}^{{c}}\tan {x}\;\mathrm{d}x = 0 \!
\int_{-\frac{a}{2}}^{\frac{a}{2}} x^2\cos^2 {\frac{n\pi x}{a}}\;\mathrm{d}x = \frac{a^3(n^2\pi^2-6)}{24n^2\pi^2}   \qquad\mbox{(for }n=1,3,5...\mbox{)}\,\!
\int_{\frac{-a}{2}}^{\frac{a}{2}} x^2\sin^2 {\frac{n\pi x}{a}}\;\mathrm{d}x = \frac{a^3(n^2\pi^2-6(-1)^n)}{24n^2\pi^2} = \frac{a^3}{24} (1-6\frac{(-1)^n}{n^2\pi^2})  \qquad\mbox{(for }n=1,2,3,...\mbox{)}\,\!

Integral over a full circle

\int_{{0}}^{{2 \pi}}\sin^{2m+1}{x}\cos^{2n+1}{x}\;\mathrm{d}x = 0 \! \qquad \{n,m\} \in \mathbb{Z}

See also

References

<templatestyles src="Reflist/styles.css" />

Cite error: Invalid <references> tag; parameter "group" is allowed only.

Use <references />, or <references group="..." />