Lagrange invariant

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

In optics the Lagrange invariant is a measure of the light propagating through an optical system. It is defined by

H = n\overline{u}y - nu\overline{y},

where y and u are the marginal ray height and angle respectively, and ȳ and ū are the chief ray height and angle. n is the ambient refractive index. In order to reduce confusion with other quantities, the symbol Ж may be used in place of H.[1] Ж2 is proportional to the throughput of the optical system (related to étendue).[1] For a given optical system, the Lagrange invariant is a constant throughout all space, that is, it is invariant upon refraction and transfer.

The optical invariant is a generalization of the Lagrange invariant which is formed using the ray heights and angles of any two rays. For these rays, the optical invariant is a constant throughout all space.[2]

References

<templatestyles src="Reflist/styles.css" />

Cite error: Invalid <references> tag; parameter "group" is allowed only.

Use <references />, or <references group="..." />

<templatestyles src="Asbox/styles.css"></templatestyles>

  1. 1.0 1.1 Lua error in package.lua at line 80: module 'strict' not found.
  2. Optics Fundamentals, Newport Corporation, retrieved 9/8/2011