Kuratowski closure axioms

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

In topology and related branches of mathematics, the Kuratowski closure axioms are a set of axioms that can be used to define a topological structure on a set. They are equivalent to the more commonly used open set definition. They were first introduced by Kazimierz Kuratowski.[1]

A similar set of axioms can be used to define a topological structure using only the dual notion of interior operator.

Definition

Let X be a set and \mathcal{P}(X) its power set.
A Kuratowski Closure Operator is an assignment \operatorname{cl}:\mathcal{P}(X) \to \mathcal{P}(X) with the following properties:[2]

  1.  \operatorname{cl}(\varnothing) = \varnothing (Preservation of Nullary Union)
  2.  A \subseteq \operatorname{cl}(A) \text{ for every subset }A \subseteq X (Extensivity)
  3.  \operatorname{cl}(A \cup B) = \operatorname{cl}(A) \cup \operatorname{cl}(B) \text{ for any subsets }A,B \subseteq X (Preservation of Binary Union)
  4.  \operatorname{cl}(\operatorname{cl}(A)) = \operatorname{cl}(A) \text{ for every subset }A \subseteq X (Idempotence)

If the last axiom, idempotence, is omitted, then the axioms define a preclosure operator.

A consequence of the third axiom is:  A \subseteq B \Rightarrow \operatorname{cl}(A) \subseteq \operatorname{cl}(B) (Preservation of Inclusion).[3]

The four Kuratowski closure axioms can be replaced by a single condition, namely,[4]

A \cup \operatorname{cl}(A) \cup \operatorname{cl}(\operatorname{cl}(B)) = \operatorname{cl}(A \cup B) \setminus \operatorname{cl}(\varnothing) \text{ for all subsets }A, B \subseteq X.

Connection to other axiomatizations of topology

Induction of Topology

Construction
A closure operator naturally induces a topology as follows:
A subset  C\subseteq X is called closed if and only if  \operatorname{cl}(C) = C .

Empty Set and Entire Space are closed:
By extensitivity,  X\subseteq\operatorname{cl}(X) and since closure maps the power set of X into itself (that is, the image of any subset is a subset of X),  \operatorname{cl}(X)\subseteq X we have  X = \operatorname{cl}(X). Thus  X is closed.
The preservation of nullary unions states that  \operatorname{cl}(\varnothing) = \varnothing . Thus  \varnothing is closed.

Arbitrary intersections of closed sets are closed:
Let  \mathcal{I} be an arbitrary set of indices and  C_i closed for every  i\in\mathcal{I}.
By extensitivity,  \bigcap_{i\in\mathcal{I}}C_i \subseteq \operatorname{cl}(\bigcap_{i\in\mathcal{I}}C_i).
Also, by preservation of inclusions,  \bigcap_{i\in\mathcal{I}}C_i \subseteq C_i \forall i\in\mathcal{I} \Rightarrow \operatorname{cl}(\bigcap_{i\in\mathcal{I}}C_i) \subseteq \operatorname{cl}(C_i) = C_i \forall i\in\mathcal{I} \Rightarrow \operatorname{cl}(\bigcap_{i\in\mathcal{I}}C_i) \subseteq \bigcap_{i\in\mathcal{I}}C_i.
Therefore,  \bigcap_{i\in\mathcal{I}}C_i = \operatorname{cl}(\bigcap_{i\in\mathcal{I}}C_i) . Thus  \bigcap_{i\in\mathcal{I}}C_i is closed.

Finite unions of closed sets are closed:
Let  \mathcal{I} be a finite set of indices and let  C_i be closed for every  i\in\mathcal{I} .
From the preservation of binary unions and using induction we have  \bigcup_{i\in\mathcal{I}}C_i = \operatorname{cl}(\bigcup_{i\in\mathcal{I}}C_i) . Thus  \bigcup_{i\in\mathcal{I}}C_i is closed.

Induction of closure

In any induced topology (relative to the subset A) the closed sets induce a new closure operator that is just the original closure operator restricted to A:  \operatorname{cl_A}(B) = A \cap \operatorname{cl_X}(B) \text{ for all } B \subseteq A. [5]

Recovering notions from topology

Closeness
A point p is close to a subset A iff p\in\operatorname{cl}(A).

Continuity
A function f:X\to Y is continuous at a point p iff p\in\operatorname{cl}(A) \Rightarrow f(p)\in\operatorname{cl}(f(A)).

See also

Notes

<templatestyles src="Reflist/styles.css" />

Cite error: Invalid <references> tag; parameter "group" is allowed only.

Use <references />, or <references group="..." />

References

  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.


External links