Kravchuk polynomials

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

Kravchuk polynomials or Krawtchouk polynomials (also written using several other transliterations of the Ukrainian name "Кравчу́к") are discrete orthogonal polynomials associated with the binomial distribution, introduced by Mikhail Kravchuk (1929). The first few polynomials are (for q=2):

  • \mathcal{K}_0(x; n) = 1
  • \mathcal{K}_1(x; n) = -2x + n
  • \mathcal{K}_2(x; n) = 2x^2 - 2nx + {n\choose 2}
  • \mathcal{K}_3(x; n) = -\frac{4}{3}x^3 + 2nx^2 - (n^2 - n + \frac{2}{3})x + {n \choose 3}.

The Kravchuk polynomials are a special case of the Meixner polynomials of the first kind.

Definition

For any prime power q and positive integer n, define the Kravchuk polynomial

\mathcal{K}_k(x; n) = \mathcal{K}_k(x) = \sum_{j=0}^{k}(-1)^j (q-1)^{k-j} \binom {x}{j} \binom{n-x}{k-j}, \quad k=0,1, \ldots, n.

Properties

The Kravchuk polynomial has the following alternative expressions:

\mathcal{K}_k(x; n) = \sum_{j=0}^{k}(-q)^j (q-1)^{k-j} \binom {n-j}{k-j} \binom{x}{j}.
\mathcal{K}_k(x; n) = \sum_{j=0}^{k}(-1)^j q^{k-j} \binom {n-k+j}{j} \binom{n-x}{k-j}.

Orthogonality relations

For nonnegative integers r, s,

\sum_{i=0}^n\binom{n}{i}(q-1)^i\mathcal{K}_r(i; n)\mathcal{K}_s(i; n) = q^n(q-1)^r\binom{n}{r}\delta_{r,s}.

See also

References

  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found..
  • Lua error in package.lua at line 80: module 'strict' not found..
  • Lua error in package.lua at line 80: module 'strict' not found.

External links