Ionone
|
|||
|
|||
|
|||
Names | |||
---|---|---|---|
IUPAC names
α: (3E)-4-(2,6,6-Trimethylcyclohex-2-en-1-yl)but-3-en-2-one
β: (3E)-4-(2,6,6-Trimethylcyclohex-1-en-1-yl)but-3-en-2-one γ: (3E)-4-(2,2-Dimethyl-6-methylenecyclohexyl)but-3-en-2-one |
|||
Other names
Cyclocitrylideneacetone, irisone, jonon
|
|||
Identifiers | |||
127-41-3 α 79-77-6 β 79-76-5 γ |
|||
ChEBI | CHEBI:49250 | ||
ChemSpider | 4516050 | ||
Jmol 3D model | Interactive image | ||
PubChem | 5363741 | ||
UNII | QP734LIN1K | ||
|
|||
|
|||
Properties | |||
C13H20O | |||
Molar mass | 192.30 g/mol | ||
Density | α: 0.933 g/cm3 β: 0.945 g/cm3 |
||
Melting point | β: −49 °C (−56 °F; 224 K) | ||
Boiling point | β: 126 to 128 °C (259 to 262 °F; 399 to 401 K) at 12 mmHg | ||
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|||
verify (what is ?) | |||
Infobox references | |||
The ionones are a series of closely related chemical substances that are part of a group of compounds known as rose ketones, which also includes damascones and damascenones. Ionones are aroma compounds found in a variety of essential oils, including rose oil. β-Ionone is a significant contributor to the aroma of roses, despite its relatively low concentration, and is an important fragrance chemical used in perfumery.[1] The ionones are derived from the degradation of carotenoids.
The combination of α-ionone and β-ionone is characteristic of the scent of violets and used with other components in perfumery and flavouring to recreate their scent.[2][3]
The carotenes α-carotene, β-carotene, γ-carotene, and the xanthophyll, and β-cryptoxanthin, can all be metabolized to β-ionone, and thus have vitamin A activity because they can be converted by plant-eating animals to retinol and retinal. Carotenoids that do not contain the β-ionone moiety cannot be converted to retinol, and thus have no vitamin A activity.
Biosynthesis
Carotenoids are the precursors of important fragrance compounds in several flowers. For example, a 2010 study of ionones in Osmanthus fragrans Lour. var. aurantiacus determined its essential oil contained the highest diversity of carotenoid-derived volatiles among the flowering plants investigated. A cDNA encoding a carotenoid cleavage enzyme, OfCCD1, was identified from transcripts isolated from flowers of O. fragrans Lour. The recombinant enzymes cleaved carotenes to produce α-ionone and β-ionone in in vitro assays.[4]
The same study also discovered that carotenoid content, volatile emissions, and OfCCD1 transcript levels are subject to photorhythmic changes, and principally increased during daylight hours. At the times when OfCCD1 transcript levels reached their maxima, the carotenoid content remained low or slightly decreased. The emission of ionones was also higher during the day; however, emissions decreased at a lower rate than the transcript levels. Moreover, carotenoid content increased from the first to the second day, whereas the volatile release decreased, and the OfCCD1 transcript levels displayed steady-state oscillations, suggesting that the substrate availability in the cellular compartments is changing or other regulatory factors are involved in volatile norisoprenoid formation. The formation of ionones proceeds by a process mediated by the carotenoid dioxygenases.[4]
Organic synthesis
Ionone can be synthesised from citral and acetone with calcium oxide as a basic heterogeneous catalyst and serves as an example of an aldol condensation followed by a rearrangement reaction.[5][6]
The nucleophilic addition of the carbanion 3 of acetone 1 to the carbonylgroup on citral 4 is base catalysed. The aldol condensation product 5 eliminates water through the enolate ion 6 to form pseudoionone 7.
The reaction proceeds by acid catalysis where the double bond in 7 opens to form the carbocation 8. A rearrangement reaction of the carbocation follows with ring closure to 9. Finally a hydrogen atom can be abstracted from 9 by an acceptor molecule (Y) to form either 10 (extended conjugated system) or 11.
References
<templatestyles src="Reflist/styles.css" />
Cite error: Invalid <references>
tag; parameter "group" is allowed only.
<references />
, or <references group="..." />
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ 4.0 4.1 Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- Pages with reference errors
- Chemical articles with multiple CAS Registry Numbers
- Articles without KEGG source
- Pages using collapsible list with both background and text-align in titlestyle
- Chemical articles using a fixed chemical formula
- Chemical infoboxes with tracked parameters
- Perfume ingredients
- Flavors
- Ketones
- Terpenes and terpenoids
- Sesquiterpenes