Initial value theorem

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

In mathematical analysis, the initial value theorem is a theorem used to relate frequency domain expressions to the time domain behavior as time approaches zero.[1]

It is also known under the abbreviation IVT.

Let

 F(s) = \int_0^\infty f(t) e^{-st}\,dt

be the (one-sided) Laplace transform of ƒ(t). The initial value theorem then says[2]

\lim_{t\to 0}f(t)=\lim_{s\to\infty}{sF(s)}. \,

Proof

Based on the definition of Laplace transform of derivative we have:

sF(s)=f(0^-)+\int_{t=0^-}^{\infty}e^{-st}f^{'}(t)dt

thus:

\lim_{s \to \infty} sF(s)=\lim_{s \to \infty} [f(0^-)+\int_{t=0^-}^{\infty}e^{-st}f^{'}(t)dt]

But \lim_{s \to \infty}e^{-st} is indeterminate between t=0 to t=0+; to avoid this, the integration can be performed in two intervals:

\lim_{s \to \infty} [\int_{t=0^-}^{\infty}e^{-st}f^{'}(t)dt]
=\lim_{s \to \infty}\{\lim_{\epsilon \to 0^+}[\int_{t=0^-}^{\epsilon}e^{-st}f^{'}(t)dt] + \lim_{\epsilon \to 0^+}[\int_{t=\epsilon}^{\infty}e^{-st}f^{'}(t)dt]\}

In the first expression,

e^{-st} = 1 \qquad \mathrm{when} \qquad 0^- < t < 0^+.

In the second expression, the order of integration and limit-taking can be changed. Also

\lim_{s \to \infty}e^{-st}(t) = 0 \qquad \mathrm{where} \qquad 0^+ < t < \infty.

Therefore:[3]

\begin{align}
\lim_{s \to \infty} [\int_{t=0^-}^{\infty}e^{-st}f^{'}(t)dt] &=\lim_{s \to \infty}\{\lim_{\epsilon \to 0^+}[\int_{t=0^-}^{\epsilon}f^{'}(t)dt]\} + \lim_{\epsilon \to 0^+}\{\int_{t=\epsilon}^{\infty}\lim_{s \to \infty}[e^{-st}f^{'}(t)dt]\}\\
&=f(t)|_{t=0^-}^{t=0^+} + 0\\
&= f(0^+)-f(0^-)+0\\
\end{align}

By substitution of this result in the main equation we get:

\lim_{s \to \infty} sF(s)=f(0^-)+f(0^+)-f(0^-)=f(0^+)

See also

Notes

  1. http://fourier.eng.hmc.edu/e102/lectures/Laplace_Transform/node17.html
  2. Robert H. Cannon, Dynamics of Physical Systems, Courier Dover Publications, 2003, page 567.
  3. Lua error in package.lua at line 80: module 'strict' not found.


<templatestyles src="Asbox/styles.css"></templatestyles>