HR 8832

From Infogalactic: the planetary knowledge core
(Redirected from HD 219134)
Jump to: navigation, search
HR 8832
PIA19832-StarHD219134-Location-20150730.jpg
Star HR 8832 (circled) lies just off the "W" shape of the constellation Cassiopeia.
Observation data
Epoch J2000      Equinox J2000
Constellation Cassiopeia
Right ascension 23h 13m 16.97632s[1]
Declination +57° 10′ 06.0823″[1]
Apparent magnitude (V) 5.574[2]
Characteristics
Spectral type K3 V[3]
U−B color index +0.902[2]
B−V color index +0.983[2]
Variable type Suspected[4]
Astrometry
Radial velocity (Rv) –18.5[5] km/s
Proper motion (μ) RA: +2075.07±0.33[1] mas/yr
Dec.: +295.45±0.25[1] mas/yr
Parallax (π) 152.76 ± 0.29[1] mas
Distance 21.35 ± 0.04 ly
(6.55 ± 0.01 pc)
Absolute magnitude (MV) 6.50
Details
Mass 0.794+0.037
−0.022
[6] M
Radius 0.80±0.04[7] R
Luminosity 0.28[note 1] L
Surface gravity (log g) 4.50[3] cgs
Temperature 4710[3] K
Metallicity [Fe/H] +0.20[3] dex
Rotational velocity (v sin i) 6.94[8] km/s
Age ~12.46[6] Gyr
Other designations
BD+56 2966, FK5 875, GCTP 5616.00, Gl 892, HD 219134, HIP 114622, LFT 1767, LHS 71, LTT 16826, SAO 35236.[9]
Database references
SIMBAD data

HR 8832 (or HD 219134, or Gliese 892) is a main sequence star in the constellation of Cassiopeia. It is smaller and less luminous than our Sun, with a spectral class of K3V, which makes it an orange-red hued star. HR 8832 is relatively close to our system, with an estimated distance of 21.25 light years. This star is close to the limit of apparent magnitude that can still be seen by the unaided eye. The limit is considered to be magnitude 6 for most observers.

This star has a magnitude 9.4 companion at an angular separation of 106.6 arcseconds.[10] The star is reported to host a rocky super-Earth, HD 219134 b, based on size (1.6 times the size of Earth), and density (6 grams per cubic cm).[11][12] A further three exoplanets, two super-Earths and one Jovian world, have been deduced using Harps-N radial velocity data.[13] Two more were discovered two months later.[14]

Planetary system

The HR 8832 planetary system[15][16][17][18][19][20] [21]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b 0.012±0.001 MJ 0.038474±8e-07 3.0931±0.0001 0.0+0.13
−0.0
85.058±0.08° 0.1433±0.0077 RJ
c 0.011±0.002 MJ 0.064816±4e-06 6.7635±0.0006 0.0+0.26
−0.0
f 0.028±0.003 MJ 0.14574±2e-05 22.805±0.005 0.0
d 0.067±0.004 MJ 0.23508±4e-06 46.71±0.01 0.0
g 0.034±0.004 MJ 0.3753±0.0004 94.2±0.2
e 0.0117+0.19
−0.006
 MJ
2.56+3.41
−0.15
1842.0+4199.0
−292.0
0.34±0.17
h 0.34 MJ 3.11±0.04 2247.0±43.0 0.06±0.04

References

  1. 1.0 1.1 1.2 1.3 1.4 Lua error in package.lua at line 80: module 'strict' not found.
  2. 2.0 2.1 2.2 Lua error in package.lua at line 80: module 'strict' not found.
  3. 3.0 3.1 3.2 3.3 Lua error in package.lua at line 80: module 'strict' not found.
  4. Lua error in package.lua at line 80: module 'strict' not found.
  5. Lua error in package.lua at line 80: module 'strict' not found.
  6. 6.0 6.1 Lua error in package.lua at line 80: module 'strict' not found.
  7. Lua error in package.lua at line 80: module 'strict' not found.
  8. Lua error in package.lua at line 80: module 'strict' not found.
  9. Lua error in package.lua at line 80: module 'strict' not found.
  10. Lua error in package.lua at line 80: module 'strict' not found.
  11. Lua error in package.lua at line 80: module 'strict' not found.
  12. Lua error in package.lua at line 80: module 'strict' not found.
  13. Lua error in package.lua at line 80: module 'strict' not found.
  14. Lua error in package.lua at line 80: module 'strict' not found.
  15. http://exoplanet.eu/catalog/hd_219134_b/
  16. http://exoplanet.eu/catalog/hd_219134_c/
  17. http://exoplanet.eu/catalog/hd_219134_d/
  18. http://exoplanet.eu/catalog/hd_219134_e/
  19. Lua error in package.lua at line 80: module 'strict' not found.
  20. Lua error in package.lua at line 80: module 'strict' not found.
  21. Lua error in package.lua at line 80: module 'strict' not found.

Notes

  1. From \begin{smallmatrix}L=4 \pi R^2 \sigma T_{\rm eff}^4 \end{smallmatrix}, where \begin{smallmatrix}L \end{smallmatrix} is the luminosity, \begin{smallmatrix}R \end{smallmatrix} is the radius, \begin{smallmatrix}T_{\rm eff}\end{smallmatrix} is the effective surface temperature and \begin{smallmatrix}\sigma \end{smallmatrix} is the Stefan–Boltzmann constant

External links

  • Lua error in package.lua at line 80: module 'strict' not found.

Coordinates: Sky map 23h 13m 16.98s, +57° 10′ 06.1″