Dunford–Schwartz theorem

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

In mathematics, particularly functional analysis, the Dunford–Schwartz theorem, named after Nelson Dunford and Jacob T. Schwartz states that the averages of powers of certain norm-bounded operators on L1 converge in a suitable sense.[1]

Statement of the theorem

\text{Let }T \text{ be a linear operator from }L^1 \text{ to }L^1 \text{ with }\|T\|_1\leq 1\text{ and }\|T\|_\infty\leq 1 \text{. Then}

\lim_{n\rightarrow\infty}\frac{1}{n}\sum_{k=0}^{n-1}T^kf

 \text{exists almost everywhere for all }f\in L^1\text{.}

The statement is no longer true when the boundedness condition is relaxed to even \|T\|_\infty\le 1+\varepsilon.[2]

Notes

<templatestyles src="Reflist/styles.css" />

Cite error: Invalid <references> tag; parameter "group" is allowed only.

Use <references />, or <references group="..." />


<templatestyles src="Asbox/styles.css"></templatestyles>

  1. Lua error in package.lua at line 80: module 'strict' not found..
  2. Lua error in package.lua at line 80: module 'strict' not found..