Crossbar theorem
In geometry, the crossbar theorem states that if ray AD is between ray AC and ray AB, then ray AD intersects line segment BC.[1]
This result is one of the deeper results in axiomatic plane geometry.[2] It is often used in proofs to justify the statement that a line through a vertex of a triangle lying inside the triangle meets the side of the triangle opposite that vertex. This property was often used by Euclid in his proofs without explicit justification.[3]
Some modern treatments (not Euclid's) of the proof of the theorem that the base angles of an isosceles triangle are congruent start like this: Let ABC be a triangle with side AB congruent to side AC. Draw the angle bisector of angle A and let D be the point at which it meets side BC. And so on. The justification for the existence of point D is the often unstated crossbar theorem. For this particular result, other proofs exist which do not require the use of the crossbar theorem.[4]
See also
Notes
<templatestyles src="Reflist/styles.css" />
Cite error: Invalid <references>
tag; parameter "group" is allowed only.
<references />
, or <references group="..." />
References
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
<templatestyles src="Asbox/styles.css"></templatestyles>
- ↑ Greenberg 1974, p. 69
- ↑ Kay 1993, p. 122
- ↑ Blau 2003, p. 135
- ↑ Moise 1974, p. 70