Circle packing in an equilateral triangle
Circle packing in an equilateral triangle is a packing problem in discrete mathematics where the objective is to pack n unit circles into the smallest possible equilateral triangle. Optimal solutions are known for n < 13 and for any triangular number of circles, and conjectures are available for n < 28.[1][2][3]
A conjecture of Paul Erdős and Norman Oler states that, if n is a triangular number, then the optimal packings of n − 1 and of n circles have the same side length: that is, according to the conjecture, an optimal packing for n − 1 circles can be found by removing any single circle from the optimal hexagonal packing of n circles.[4] This conjecture is now known to be true for n ≤ 15.[5]
Minimum solutions for the side length of the triangle:[1]
Number of circles | Length |
---|---|
1 | 3.464... |
2 | 5.464... |
3 | 5.464... |
4 | 6.928... 120x120px |
5 | 7.464... ![]() |
6 | 7.464... |
7 | 8.928... |
8 | 9.293... |
9 | 9.464... |
10 | 9.464... |
11 | 10.730... |
12 | 10.928... |
13 | 11.406... |
14 | 11.464... |
15 | 11.464... |
A closely related problem is to cover the equilateral triangle with a given number of circles, having as small a radius as possible.[6]
See also
- Circle packing in an isosceles right triangle
- Malfatti circles, a construction giving the optimal solution for three circles in an equilateral triangle
References
- ↑ 1.0 1.1 Lua error in package.lua at line 80: module 'strict' not found..
- ↑ Lua error in package.lua at line 80: module 'strict' not found..
- ↑ Lua error in package.lua at line 80: module 'strict' not found..
- ↑ Lua error in package.lua at line 80: module 'strict' not found..
- ↑ Lua error in package.lua at line 80: module 'strict' not found..
- ↑ Lua error in package.lua at line 80: module 'strict' not found..
<templatestyles src="Asbox/styles.css"></templatestyles>