Causal Markov condition

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

The Markov condition (sometimes called Markov assumption) for a Bayesian network states that any node in a Bayesian network is conditionally independent of its nondescendents, given its parents.

A node is conditionally independent of the entire network, given its Markov blanket.

The related causal Markov condition is that a phenomenon is independent of its noneffects, given its direct causes.[1] In the event that the structure of a Bayesian network accurately depicts causality, the two conditions are equivalent. However, a network may accurately embody the Markov condition without depicting causality, in which case it should not be assumed to embody the causal Markov condition.

Notes

<templatestyles src="Reflist/styles.css" />

Cite error: Invalid <references> tag; parameter "group" is allowed only.

Use <references />, or <references group="..." />

<templatestyles src="Asbox/styles.css"></templatestyles>

  1. Lua error in package.lua at line 80: module 'strict' not found.