Bridge number
<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

In the mathematical field of knot theory, the bridge number is an invariant of a knot defined as the minimal number of bridges required in all the possible bridge representations of a knot.
Definition
Given a knot or link, draw a diagram of the link using the convention that a gap in the line denotes an undercrossing. Call an arc in this diagram a bridge if it includes at least one overcrossing. Then the bridge number of a knot can be found as the minimum number of bridges required for any diagram of the knot.[1] Bridge number was first studied in the 1950s by Horst Schubert.[2]
The bridge number can equivalently be defined geometrically instead of topologically. In bridge representation, a knot lies entirely in the plane apart for a finite number of bridges whose projections onto the plane are straight lines. Equivalently the bridge number is the minimal number of local maxima of the projection of the knot onto a vector, where we minimize over all projections and over all conformations of the knot.
Properties
Every non-trivial knot has bridge number at least two,[1] so the knots that minimize the bridge number (other than the unknot) are the 2-bridge knots. It can be shown that every n-bridge knot can be decomposed into two trivial n-tangles and hence 2-bridge knots are rational knots.
If K is the connected sum of K1 and K2, then the bridge number of K is one less than the sum of the bridge numbers of K1 and K2.[3]
Other numerical invariants
References
<templatestyles src="Reflist/styles.css" />
Cite error: Invalid <references>
tag; parameter "group" is allowed only.
<references />
, or <references group="..." />
Further reading
- Cromwell, Peter (1994). Knots and Links. Cambridge. ISBN 9780521548311.