Biophoton

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

A biophoton (from the Greek βίος meaning "life" and φῶς meaning "light") is a photon of non-thermal origin in the visible and ultraviolet spectrum emitted from a biological system. Emission of biophotons is technically a type of bioluminescence, but the latter term is generally reserved for higher luminance luciferin/luciferase systems. The term biophoton used in this narrow sense should not be confused with the broader field of biophotonics, which studies the general interaction of light with biological systems.

The typical observed radiant emittance of biological tissues in the visible and ultraviolet frequencies ranges from 10−19 to 10−16 W/cm2 (approx 1-1000 photons/cm2/second). This light intensity is much weaker than that seen in the perceptually visible and well-researched phenomenon of normal bioluminescence but is detectable above the background of thermal radiation emitted by tissues at their normal temperature.

While detection of biophotons has been reported by several groups,[1][2][3] hypotheses that such biophotons indicate the state of biological tissues and facilitate a form of cellular communication are controversial.Their discoverer, Alexander Gurwitsch, was awarded the Stalin Prize.[4]

Detection and measurement

Biophotons may be detected with photomultipliers or by means of an ultra low noise CCD camera to produce an image, using an exposure time of typically 15 minutes for plant materials.[5][6]The typical observed radiant emittance of biological tissues in the visible and ultraviolet frequencies ranges from 10−19 to 10−16 W/cm2.[citation needed]

Proposed physical mechanisms

Chemi-excitation via oxidative stress by reactive oxygen species and/or catalysis by enzymes (i.e., peroxidase, lipoxygenase) is a common event in the biomolecular milieu.[7] Such reactions can lead to the formation of triplet excited species, which release photons upon returning to a lower energy level in a process analogous to phosphorescence. That this process is a contributing factor to spontaneous biophoton emission has been indicated by studies demonstrating that biophoton emission can be increased by depleting assayed tissue of antioxidants[8] or by addition of carbonyl derivatizing agents.[9] Further support is provided by studies indicating that emission can be increased by addition of reactive oxygen species.[10]

Plants

Imaging of biophotons from leaves has been used as a method for Assaying R Gene Responses. These genes and their associated proteins are responsible for pathogen recognition and activation of defense signaling networks leading to the hypersensitive response,[11] which is one of the mechanisms of the resistance of plants to pathogen infection. It involves the generation of reactive oxygen species (ROS), which have crucial roles in signal transduction or as toxic agents leading to cell death.[12]

Biophoton have been observed in stressed plant's roots, too. In healthy cells, the concentration of ROS is minimized by a system of biological antioxidants. However, heat shock and other stresses changes the equilibrium between oxidative stress and antioxidant activity, for example, the rapid rise in temperature induces biophoton emission by ROS.[13]

Theoretical biophysics

Hypothesized involvement in cellular communication

In the 1920s, the Russian embryologist Alexander Gurwitsch reported "ultraweak" photon emissions from living tissues in the UV-range of the spectrum. He named them "mitogenetic rays" because his experiments convinced him that they had a stimulating effect on cell division.[medical citation needed]

Biophotons were claimed to have been employed by the Stalin regime to diagnose cancer. The method has not been tested in the West. However, failure to replicate his findings and the fact that, though cell growth can be stimulated and directed by radiation this is possible only at much higher amplitudes, evoked a general skepticism about Gurwitsch's work. In 1953 Irving Langmuir dubbed Gurwitsch's ideas pathological science. Commercial products, therapeutic claims and services supposedly based on his work appear at present to be best regarded as such.[citation needed]

But in the later 20th century Gurwitsch's daughter Anna, Colli, Quickenden and Inaba separately returned to the subject, referring to the phenomenon more neutrally as "dark luminescence", "low level luminescence", "ultraweak bioluminescence", or "ultraweak chemiluminescence".[citation needed] Their common basic hypothesis was that the phenomenon was induced from rare oxidation processes and radical reactions. In the 1970s Fritz-Albert Popp and his research group at the University of Marburg (Germany) showed that the spectral distribution of the emission fell over a wide range of wavelengths, from 200 to 750 nm. [14] Popp proposed that the radiation might be both semi-periodic and coherent.[citation needed]

One biophoton mechanism focuses on injured cells that are under higher levels of oxidative stress, which is one source of light, and can be deemed to constitute a "distress signal" or background chemical process is yet to be demonstrated.[15] The difficulty of teasing out the effects of any supposed biophotons amid the other numerous chemical interactions between cells makes it difficult to devise a testable hypothesis. A 2010 review article[16] discusses various published theories on this kind of signaling.

Pseudoscience

Many claims with no scientific proof have been made for cures and diagnosis using biophotons.[17] An appraisal of "biophoton therapy" by the IOCOB[18] notes that biophoton therapy claims to treat a wide variety of diseases, such as malaria, Lyme disease, multiple sclerosis, schizophrenia, and depression, but that all these claims remain unproven. Dr. F.Popp, a researcher who investigates biophoton emission, concludes that the complexity of cellular chemical reactions in living systems is such that it excludes the possibility to create a machine to selectively heal systems using biophotons, and that "there are always charlatans who believe in these miracles."[18][19]

Quantum medicine

This claims:

"The quantum level possesses the highest level of coherence within the human organism. Sick individuals with weak immune systems or cancer have poor and chaotic coherence with disturbed biophoton cellular communication. Therefore, disease can be seen as the result of disturbances on the cellular level that act to distort the cell's quantum perspective. This causes electrons to become misplaced in protein molecules and metabolic processes become derailed as a result. Once cellular metabolism is compromised the cell becomes isolated from the regulated process of natural growth control."[20]

A review of the American Academy of Quantum Medicine[17] concludes that many quantum medicine practitioners are not licensed as health care professionals, that quantum medicine uses scientific terminology but is nonsense, and that the practitioners have created "a nonexistent 'energy system' to help peddle products and procedures to their clients."

See also

Notes

  1. Lua error in package.lua at line 80: module 'strict' not found.
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. Lua error in package.lua at line 80: module 'strict' not found.
  4. Lua error in package.lua at line 80: module 'strict' not found.
  5. Lua error in package.lua at line 80: module 'strict' not found.
  6. Lua error in package.lua at line 80: module 'strict' not found.
  7. Lua error in package.lua at line 80: module 'strict' not found.
  8. Lua error in package.lua at line 80: module 'strict' not found.
  9. Lua error in package.lua at line 80: module 'strict' not found.
  10. Lua error in package.lua at line 80: module 'strict' not found.
  11. Vol. 18, No. 2, 2005 /95 MPMI Vol. 18, No. 2, 2005, pp. 95–102. DOI: 10.1094 / MPMI -18-0095. © 2005 The American Phytopathological Society
  12. Journal of Experimental Botany, Vol. 58, No. 3, pp. 465–472, 2007 doi:10.1093/jxb/erl215
  13. PLOS ONE August 2014, Volume 9, Issue 8, e105700 doi:10.1371/journal.pone.0105700
  14. Wijk RV, Wijk EP. An introduction to human biophoton emission. Forsch Komplementärmed Klass Naturheilkd 2005;12:77–83
  15. Lua error in package.lua at line 80: module 'strict' not found.
  16. Lua error in package.lua at line 80: module 'strict' not found.
  17. 17.0 17.1 Lua error in package.lua at line 80: module 'strict' not found.
  18. 18.0 18.1 Lua error in package.lua at line 80: module 'strict' not found.
  19. Lua error in package.lua at line 80: module 'strict' not found.
  20. Stephen Linsteadt, N.D, published in an ANMA newsletter

External links