Zinc iodide

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Zinc iodide
ZnI2structure.jpg
Names
IUPAC name
Zinc iodide
Other names
Zinc(II) iodide
Identifiers
10139-47-6 YesY
ChemSpider 59657 YesY
Jmol 3D model Interactive image
PubChem 66278
  • InChI=1S/2HI.Zn/h2*1H;/q;;+2/p-2 YesY
    Key: UAYWVJHJZHQCIE-UHFFFAOYSA-L YesY
  • InChI=1/2HI.Zn/h2*1H;/q;;+2/p-2
    Key: UAYWVJHJZHQCIE-NUQVWONBAB
  • I[Zn]I
Properties
ZnI2
Molar mass 319.22 g/mol
Appearance white solid
Density 4.74 g/cm3
Melting point 446 °C (835 °F; 719 K)
Boiling point 1,150 °C (2,100 °F; 1,420 K) decomposes
450 g/100mL (20 °C)
Structure
Tetragonal, tI96
I41/acd, No. 142
Vapor pressure {{{value}}}
Related compounds
Other anions
Zinc fluoride
Zinc chloride
Zinc bromide
Other cations
Cadmium iodide
Mercury(I) iodide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY verify (what is YesYN ?)
Infobox references

Zinc iodide is a chemical compound of zinc and iodine, ZnI2. The anhydrous form is white and readily absorbs water from the atmosphere. It can be prepared by the direct reaction of zinc and iodine in refluxing ether.[1] or by reacting zinc with iodine in aqueous solution:[2]

Zn + I2→ ZnI2

At 1150 °C, zinc iodide vapour dissociates into zinc and iodine.[citation needed]
In aqueous solution the following have been detected, octahedral Zn(H2O)62+, [ZnI(H2O)5]+ and tetrahedral ZnI2(H2O)2, ZnI3(H2O) and ZnI42−.[3]

The structure of crystalline ZnI2 is unusual, and while zinc atoms are tetrahedrally coordinated, as in ZnCl2, groups of four of these tetrahedra share three vertices to form “super-tetrahedra” of composition {Zn4I10}, which are linked by their vertices to form a three-dimensional structure.[4] These "super-tetrahedra" are similar to the P4O10 structure.[4] Molecular ZnI2 is linear as predicted by VSEPR theory with a Zn-I bond length of 238 pm.[4]

Applications

  • Zinc iodide is often used as an x-ray opaque penetrant in industrial radiography to improve the contrast between the damage and intact composite.[5][6]
  • United States Patent 4109065 [7] describes a rechargeable aqueous zinc-halogen cell which includes an aqueous electrolytic solution containing a zinc salt selected from the class consisting of zinc bromide, zinc iodide, and mixtures thereof, in both positive and negative electrode compartments.
  • In conjunction with osmium tetroxide ZnI2 is used as a stain in electron microscopy.[8]

References

  1. Lua error in package.lua at line 80: module 'strict' not found.
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. Lua error in package.lua at line 80: module 'strict' not found.
  4. 4.0 4.1 4.2 Lua error in package.lua at line 80: module 'strict' not found.
  5. Lua error in package.lua at line 80: module 'strict' not found.
  6. Lua error in package.lua at line 80: module 'strict' not found.
  7. US patent 4109065, Will, F. G.; Secor, F. W., "Rechargeable aqueous zinc-halogen cell", issued 1978-08-22, assigned to General Electric 
  8. Lua error in package.lua at line 80: module 'strict' not found.