Steriruncic tesseractic honeycomb

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Steriruncic tesseractic honeycomb
(No image)
Type Uniform honeycomb
Schläfli symbol h3,4{4,3,3,4}
Coxeter-Dynkin diagram CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png = CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png
4-face type r{4,3,4}
t{4,3,4}
t0,1,3{4,3,4}
{3,3}×{}
Cell type t{4,3}
{3,3}
r{4,3}
{3}×{}
t{4}×{}
Face type {8}
{4}
{3}
Vertex figure
Coxeter group {\tilde{B}}_4 = [4,3,31,1]
Dual ?
Properties vertex-transitive

In four-dimensional Euclidean geometry, the steriruncic tesseractic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 4-space.

Alternate names

  • Prismatorhombated demitesseractic tetracomb (pirhatit)
  • Great prismatodemitesseractic tetracomb

Related honeycombs

The [4,3,31,1], CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png, Coxeter group generates 31 permutations of uniform tessellations, 23 with distinct symmetry and 4 with distinct geometry. There are two alternated forms: the alternations (19) and (24) have the same geometry as the 16-cell honeycomb and snub 24-cell honeycomb respectively.

See also

Regular and uniform honeycombs in 4-space:

Notes

<templatestyles src="Reflist/styles.css" />

Cite error: Invalid <references> tag; parameter "group" is allowed only.

Use <references />, or <references group="..." />

References

  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • George Olshevsky, Uniform Panoploid Tetracombs, Manuscript (2006) (Complete list of 11 convex uniform tilings, 28 convex uniform honeycombs, and 143 convex uniform tetracombs)
  • Richard Klitzing, 4D, Euclidean tesselations x3o3o *b3x4x - pirhatit - O110