SMC protein

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

SMC proteins represent a large family of ATPases that participate in many aspects of higher-order chromosome organization and dynamics.[1][2][3] SMC stands for Structural Maintenance of Chromosomes.

Classification

Eukaryotic SMCs

Eukaryotes have at least six SMC proteins in individual organisms, and they form three distinct heterodimers with specialized functions:

  • A pair of SMC1 and SMC3 constitutes the core subunits of the cohesin complexes involved in sister chromatid cohesion.[4][5][6]
  • Likewise, a pair of SMC2 and SMC4 acts as the core of the condensin complexes implicated in chromosome condensation.[7][8]
  • A dimer composed of SMC5 and SMC6 functions as part of a yet-to-be-named complex implicated in DNA repair and checkpoint responses.[9]

Each complex contains a distinct set of non-SMC regulatory subunits. Some organisms have variants of SMC proteins. For instance, mammals have a meiosis-specific variant of SMC1, known as SMC1β.[10] The nematode Caenorhabditis elegans has an SMC4-variant that has a specialized role in dosage compensation.[11]

subfamily complex S. cerevisiae S. pombe C. elegans D. melanogaster vertebrates
SMC1α cohesin Smc1 Psm1 SMC-1 DmSmc1 SMC1α
SMC2 condensin Smc2 Cut14 MIX-1 DmSmc2 CAP-E/SMC2
SMC3 cohesin Smc3 Psm3 SMC-3 DmSmc3 SMC3
SMC4 condensin Smc4 Cut3 SMC-4 DmSmc4 CAP-C/SMC4
SMC5 SMC5-6 Smc5 Smc5 C27A2.1 CG32438 SMC5
SMC6 SMC5-6 Smc6 Smc6/Rad18 C23H4.6, F54D5.14 CG5524 SMC6
SMC1β cohesin (meiotic) - - - - SMC1β
SMC4 variant dosage compensation complex - - DPY-27 - -

Prokaryotic SMCs

SMC proteins are conserved from bacteria to humans. Most bacteria have a single SMC protein in individual species that forms a homodimer.[12] In a subclass of Gram-negative bacteria including Escherichia coli, a distantly related protein known as MukB plays an equivalent role.[13]

Molecular structure

File:SMCfolding(en).png
Structure of SMC dimer

Primary structure

SMC proteins are 1,000-1,500 amino-acid long. They have a modular structure that is composed of the following domains:

  1. Walker A ATP-binding motif
  2. coiled-coil region I
  3. hinge region
  4. coiled-coil region II
  5. Walker B ATP-binding motif; signature motif

Secondary and tertiary structure

SMC dimers form a V-shaped molecule with two long coiled-coil arms.[14][15] To make such a unique structure, an SMC protomer is self-folded through anti-parallel coiled-coil interactions, forming a rod-shaped molecule. At one end of the molecule, the N-terminal and C-terminal domains together form an ATP-binding domain. The other end is called a hinge domain. Two protomers then dimerize through their hinge domains and assemble a V-shaped dimer.[16][17] The length of the coiled-coil arms is ~50 nm long. Such long "antiparallel" coiled-coils are very rare, and found only among SMC proteins (and its relatives such as Rad50). The ATP-binding domain of SMC proteins is structurally related to that of ABC transporters, a large family of transmembrane proteins that actively transport small molecules across cellular membranes. It is thought that the cycle of ATP binding and hydrolysis modulates the cycle of closing and opening of the V-shaped molecule, but the detailed mechanisms of action of SMC proteins remain to be determined.

Genes

The following human genes encode SMC proteins:

See also

References

  1. Lua error in package.lua at line 80: module 'strict' not found.
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. Lua error in package.lua at line 80: module 'strict' not found.
  4. Lua error in package.lua at line 80: module 'strict' not found.
  5. Lua error in package.lua at line 80: module 'strict' not found.
  6. Lua error in package.lua at line 80: module 'strict' not found.
  7. Lua error in package.lua at line 80: module 'strict' not found.
  8. Lua error in package.lua at line 80: module 'strict' not found.
  9. Lua error in package.lua at line 80: module 'strict' not found.
  10. Lua error in package.lua at line 80: module 'strict' not found.
  11. Lua error in package.lua at line 80: module 'strict' not found.
  12. Lua error in package.lua at line 80: module 'strict' not found.
  13. Lua error in package.lua at line 80: module 'strict' not found.
  14. Lua error in package.lua at line 80: module 'strict' not found.
  15. Lua error in package.lua at line 80: module 'strict' not found.
  16. Lua error in package.lua at line 80: module 'strict' not found.
  17. Lua error in package.lua at line 80: module 'strict' not found.