Truncated tetraheptagonal tiling
From Infogalactic: the planetary knowledge core
(Redirected from 742 symmetry)
Truncated tetraheptagonal tiling | |
---|---|
![]() Poincaré disk model of the hyperbolic plane |
|
Type | Hyperbolic uniform tiling |
Vertex configuration | 4.8.14 |
Schläfli symbol | tr{7,4} |
Wythoff symbol | 2 7 4 | |
Coxeter diagram | ![]() ![]() ![]() ![]() ![]() |
Symmetry group | [7,4], (*742) |
Dual | Order-4-7 kisrhombille tiling |
Properties | Vertex-transitive |
In geometry, the truncated tetraheptagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of tr{4,7}.
Contents
Images
Poincaré disk projection, centered on 14-gon:
Symmetry
File:Truncated tetraheptagonal tiling with mirrors.png
Truncated tetraheptagonal tiling with mirror lines. 









The dual to this tiling represents the fundamental domains of [7,4] (*742) symmetry. There are 3 small index subgroups constructed from [7,4] by mirror removal and alternation. In these images fundamental domains are alternately colored black and white, and mirrors exist on the boundaries between colors.
Small index subgroups of [7,4] (*742) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Index | 1 | 2 | 14 | ||||||||
Diagram | 160px | 160px | 160px | 160px | |||||||
Coxeter (orbifold) |
[7,4] = ![]() ![]() ![]() ![]() ![]() (*742) |
[7,4,1+] = ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() (*772) |
[7+,4] = ![]() ![]() ![]() ![]() ![]() (7*2) |
[7*,4] = ![]() ![]() ![]() ![]() ![]() ![]() (*2222222) |
|||||||
Index | 2 | 4 | 28 | ||||||||
Diagram | 160px | 160px | 160px | ||||||||
Coxeter (orbifold) |
[7,4]+ = ![]() ![]() ![]() ![]() ![]() (742) |
[7+,4]+ = ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() (772) |
[7*,4]+ = ![]() ![]() ![]() ![]() ![]() ![]() (2222222) |
Related polyhedra and tiling
Uniform heptagonal/square tilings | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry: [7,4], (*742) | [7,4]+, (742) | [7+,4], (7*2) | [7,4,1+], (*772) | ||||||||
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
60px | ![]() |
||
{7,4} | t{7,4} | r{7,4} | 2t{7,4}=t{4,7} | 2r{7,4}={4,7} | rr{7,4} | tr{7,4} | sr{7,4} | s{7,4} | h{4,7} | ||
Uniform duals | |||||||||||
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||||
V74 | V4.14.14 | V4.7.4.7 | V7.8.8 | V47 | V4.4.7.4 | V4.8.14 | V3.3.4.3.7 | V3.3.7.3.7 | V77 |
*n42 symmetry mutation of omnitruncated tilings: 4.8.2n | ||||||||
---|---|---|---|---|---|---|---|---|
Symmetry *n42 [n,4] |
Spherical | Euclidean | Compact hyperbolic | Paracomp. | ||||
*242 [2,4] |
*342 [3,4] |
*442 [4,4] |
*542 [5,4] |
*642 [6,4] |
*742 [7,4] |
*842 [8,4]... |
*∞42 [∞,4] |
|
Omnitruncated figure |
![]() 4.8.4 |
![]() 4.8.6 |
![]() 4.8.8 |
![]() 4.8.10 |
![]() 4.8.12 |
![]() 4.8.14 |
![]() 4.8.16 |
![]() 4.8.∞ |
Omnitruncated duals |
![]() V4.8.4 |
![]() V4.8.6 |
![]() V4.8.8 |
![]() V4.8.10 |
![]() V4.8.12 |
![]() V4.8.14 |
![]() V4.8.16 |
![]() V4.8.∞ |
*nn2 symmetry mutations of omnitruncated tilings: 4.2n.2n | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry *nn2 [n,n] |
Spherical | Euclidean | Compact hyperbolic | Paracomp. | ||||||||||
*222 [2,2] |
*332 [3,3] |
*442 [4,4] |
*552 [5,5] |
*662 [6,6] |
*772 [7,7] |
*882 [8,8]... |
*∞∞2 [∞,∞] |
|||||||
Figure | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||||||
Config. | 4.4.4 | 4.6.6 | 4.8.8 | 4.10.10 | 4.12.12 | 4.14.14 | 4.16.16 | 4.∞.∞ | ||||||
Dual | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||||||
Config. | V4.4.4 | V4.6.6 | V4.8.8 | V4.10.10 | V4.12.12 | V4.14.14 | V4.16.16 | V4.∞.∞ |
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- Lua error in package.lua at line 80: module 'strict' not found.
See also
![]() |
Wikimedia Commons has media related to Uniform tiling 4-8-14. |
External links
- Weisstein, Eric W., "Hyperbolic tiling", MathWorld.
- Weisstein, Eric W., "Poincaré hyperbolic disk", MathWorld.
- Hyperbolic and Spherical Tiling Gallery
- KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
- Hyperbolic Planar Tessellations, Don Hatch
<templatestyles src="Asbox/styles.css"></templatestyles>