3-8 duoprism

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Uniform 3-8 duoprisms
140px 8-3 duoprism.png
Schlegel diagrams
Type Prismatic uniform polychoron
Schläfli symbol {3}×{8}
{3}×t{4}
Coxeter diagram CDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 8.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Cells 3 octagonal prisms,
8 triangular prisms
Faces 24 squares,
3 octagons,
8 triangles
Edges 48
Vertices 24
Vertex figure Digonal disphenoid
Symmetry [3,2,8], order 48
Dual 3-8 duopyramid
Properties convex, vertex-uniform

In geometry of 4 dimensions, a 3-8 duoprism, a duoprism and 4-polytope resulting from the Cartesian product of a triangle and a octagon.

The 3-8 duoprism exists in some of the uniform 5-polytopes in the B5 family.

Images

240px
Net

3-8 duopyramid

dual uniform 3-8 duopyramid
Type duopyramid
Schläfli symbol {3}+{8}
{3}+t{4}
Coxeter-Dynkin diagram CDel node f1.pngCDel 3.pngCDel node.pngCDel 2x.pngCDel node f1.pngCDel 8.pngCDel node.png
CDel node f1.pngCDel 3.pngCDel node.pngCDel 2x.pngCDel node f1.pngCDel 4.pngCDel node f1.png
Cells 24 digonal disphenoids
Faces 48 isosceles triangles
Edges 35 (24+3+8)
Vertices 11 (3+8)
Symmetry [3,2,8], order 48
Dual 3-8 duoprism
Properties convex, facet-transitive

The dual of a 3-8 duoprism is called a 3-8 duopyramid. It has 24 tetragonal disphenoid cells, 48 isosceles triangular faces, 35 edges, and 11 vertices.

320px
Orthogonal projection

See also

Notes

<templatestyles src="Reflist/styles.css" />

Cite error: Invalid <references> tag; parameter "group" is allowed only.

Use <references />, or <references group="..." />

References

External links