Synthetic oil

From Infogalactic: the planetary knowledge core
(Redirected from Synthetic lubricants)
Jump to: navigation, search

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

A sample of synthetic motor oil

Synthetic oil is a lubricant consisting of chemical compounds that are artificially made (synthesized). Synthetic lubricants can be manufactured using chemically modified petroleum components rather than whole crude oil, but can also be synthesized from other raw materials. Synthetic oil is used as a substitute for lubricant refined from petroleum when operating in extremes of temperature, because, in general, it provides superior mechanical and chemical properties to those found in traditional mineral oils[citation needed]. Aircraft jet engines, for example, require the use of synthetic oils[citation needed], whereas aircraft piston engines do not. Synthetic lubricants are also used in metal stamping to provide environmental and other benefits[citation needed] when compared to conventional petroleum and animal fat based products. These products are also referred to as "non-oil" or "oil free"[citation needed].

Types

Synthetic Oil

Synthetic base stock lubricant oils, as described above, are man-made and tailored to have a controlled molecular structure with predictable properties. They are composed of organic and inorganic base stock oils combined with polymer packages to produce synthesised oil compounds (API Groups III, IV & V).

PAO

API Group IV Polyalphaolefins, 100% Synthetic chemical compound.

Poly-alpha-olefin (or poly-α-olefin, abbreviated as PAO), is a polymer made by polymerizing an alpha-olefin. It is a specific type of olefin (organic) that is used as a base stock in the production of some synthetic lubricants. An alpha-olefin (or α-olefin) is an alkene where the carbon-carbon double bond starts at the α-carbon atom, i.e. the double bond is between the #1 and #2 carbons in the molecule.[1]

Ester

API Group V Esters are 100% Synthetic chemical compounds consisting of a carbonyl adjacent to an ether linkage. They are derived by reacting an oxoacid with a hydroxyl compound such as an alcohol or phenol. Esters are usually derived from an inorganic acid or organic acid in which at least one -OH (hydroxyl) group is replaced by an -O-alkyl (alkoxy) group, most commonly from carboxylic acids and alcohols. That is to say, esters are formed by condensing an acid with an alcohol.

Many chemically different "esters" due to their usually excellent lubricity are used for various reasons as either "additives" or "base stocks" for lubricants. [1]

Semi-synthetic oil

Semi-synthetic oils (also called 'synthetic blends') are blends of mineral oil with no more than 30% synthetic oil designed to have many of the benefits of synthetic oil without matching the cost of pure synthetic oil. Motul introduced the first semi-synthetic motor oil in 1966.[2]

Lubricants that have synthetic base stocks even lower than 30% but with high-performance additives consisting of esters can also be considered synthetic lubricants. In general, the ratio of the synthetic base stock is used to define commodity codes among the customs declarations of tax purposes.

Other base stocks help semi-synthetic lubricants

API Group II- and API Group III-type base stocks help to formulate more economic-type semi-synthetic lubricants. API Group I-, II-, II+-, and III-type mineral-base oil stocks are widely used in combination with additive packages, performance packages, and ester and/or API Group IV poly-alpha-olefins in order to formulate semi-synthetic-based lubricants. API Group III base oils are sometimes considered Fully synthetic, but they are still classified as highest-top-level mineral-base stocks. A Synthetic or Synthesized material is one that is produced by combining or building individual units into a unified entry. Synthetic base stocks as described above are man-made and tailored to have a controlled molecular structure with predictable properties, unlike mineral base oils, which are complex mixtures of naturally occurring hydrocarbons and paraffins.[3] [4]

Performance

Advantages

The technical advantages of synthetic motor oils include:

Disadvantages

The disadvantages of synthetic motor oils include:

  • Substantially more expensive (per volume) than mineral oils.
  • Potential decomposition problems in certain chemical environments (predominantly in industrial use.)[citation needed]

See also

<templatestyles src="Div col/styles.css"/>

References

  1. 1.0 1.1 SynLube Incorporated. [1] All About Synthetic Oil
  2. DELPHI history
  3. ASTM Fuels & Lubricants Handbook, Hydrocarbon Chemistry, pg 169-184, section 7
  4. Lua error in package.lua at line 80: module 'strict' not found.
  5. http://link.springer.com/article/10.3103%2FS1068366614050092