Silibinin

From Infogalactic: the planetary knowledge core
(Redirected from Silybin)
Jump to: navigation, search
Silibinin
Silibinin skeletal.svg
Silibinin 3D.png
Systematic (IUPAC) name
(2R,3R)-3,5,7-trihydroxy-
2-[(2R,3R)-3-(4-hydroxy-3-methoxyphenyl)-2-(hydroxymethyl)
-2,3-dihydrobenzo[b][1,4]dioxin-6-yl]chroman-4-one
Clinical data
AHFS/Drugs.com International Drug Names
Routes of
administration
Oral Intravenous
Identifiers
CAS Number 22888-70-6 N
ATC code A05BA03 (WHO)
PubChem CID: 31553
ChemSpider 29263 YesY
UNII 4RKY41TBTF YesY
KEGG D08515 YesY
ChEBI CHEBI:9144 N
ChEMBL CHEMBL9509 N
Chemical data
Formula C25H22O10
Molecular mass 482.44 g/mol
  • O=C4c5c(O)cc(O)cc5O[C@H](c2ccc1O[C@@H]([C@H](Oc1c2)c3ccc(O)c(OC)c3)CO)[C@H]4O
  • InChI=1S/C25H22O10/c1-32-17-6-11(2-4-14(17)28)24-20(10-26)33-16-5-3-12(7-18(16)34-24)25-23(31)22(30)21-15(29)8-13(27)9-19(21)35-25/h2-9,20,23-29,31H,10H2,1H3/t20-,23+,24-,25-/m1/s1 YesY
  • Key:SEBFKMXJBCUCAI-HKTJVKLFSA-N YesY
 NYesY (what is this?)  (verify)

Silibinin (INN), also known as silybin (both from Silybum, the generic name of the plant from which it is extracted), is the major active constituent of silymarin, a standardized extract of the milk thistle seeds, containing a mixture of flavonolignans consisting of silibinin, isosilibinin, silicristin, silidianin and others. Silibinin itself is mixture of two diastereomers, silybin A and silybin B, in approximately equimolar ratio.[1]

There is some clinical evidence for the use of silibinin as a supportive element in alcoholic and child grade 'A' liver cirrhosis.[2]

Pharmacology

Poor water solubility and bioavailability of silymarin led to the development of enhanced formulations. Silipide (trade name Siliphos), a complex of silymarin and phosphatidylcholine (lecithin), is about 10 times more bioavailable than silymarin.[3] An earlier study had concluded Siliphos to have 4.6 fold higher bioavailability.[4] It has been also reported that silymarin inclusion complex with β-cyclodextrin is much more soluble than silymarin itself.[5] There have also been prepared glycosides of silybin, which show better water solubility and even stronger hepatoprotective effect.[6]

Silymarin, as other flavonoids, has been shown to inhibit P-glycoprotein-mediated cellular efflux.[7] The modulation of P-glycoprotein activity may result in altered absorption and bioavailability of drugs that are P-glycoprotein substrates. It has been reported that silymarin inhibits cytochrome P450 enzymes and an interaction with drugs primarily cleared by P450s cannot be excluded.[8]

Toxicity

A phase I clinical trial in humans with prostate cancer designed to study the effects of high dose silibinin found 13 grams daily to be well tolerated in patients with advanced prostate cancer with asymptomatic liver toxicity (hyperbilirubinemia and elevation of alanine aminotransferase) being the most commonly seen adverse event.[9]

The compound is also devoid of embryotoxic potential in animal models.[10][11]

Potential medical uses

Silibinin is under investigation to see whether it may have a role in cancer treatment.[12]

Biotechnology

Silymarin can be produced in callus and cells suspensions of Silybum marianum and substituted pyrazinecarboxamides can be used as abiotic elicitors of flavolignan production.[13]

References

<templatestyles src="Reflist/styles.css" />

Cite error: Invalid <references> tag; parameter "group" is allowed only.

Use <references />, or <references group="..." />

External links

  1. Davis-Searles P, Nakanishi, Y, Nam-Cheol K, et al. (2005). "Milk Thistle and Prostate Cancer: Differential Effects of Pure Flavonolignans from Silybum marianum on Antiproliferative End Points in Human Prostate Carcinoma Cells" Cancer Research 65 (10):4448-57. doi:10.1158/0008-5472.CAN-04-4662
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. Lua error in package.lua at line 80: module 'strict' not found.
  4. Barzaghi N, Crema F, Gatti G, Pifferi G, Perucca E. Eur J Drug Metab Pharmacokinet 1990;15:333–8.
  5. Lua error in package.lua at line 80: module 'strict' not found.
  6. Lua error in package.lua at line 80: module 'strict' not found.
  7. Lua error in package.lua at line 80: module 'strict' not found.
  8. Lua error in package.lua at line 80: module 'strict' not found.
  9. Lua error in package.lua at line 80: module 'strict' not found.
  10. Lua error in package.lua at line 80: module 'strict' not found.
  11. Lua error in package.lua at line 80: module 'strict' not found.
  12. Lua error in package.lua at line 80: module 'strict' not found.
  13. Substituted Pyrazinecarboxamides as Abiotic Elicitors of Flavolignan Production in Silybum marianum (L.) Gaertn Cultures in Vitro. Lenka Tůmová, Jiří Tůma, Klara Megušar, and Martin Doleža, Molecules, 2010, 15(1), pages 331-340, doi:10.3390/molecules15010331