Monopotassium phosphate

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Monopotassium phosphate
Kaliumdihydrogenphosphat.jpg
TetragonalKH2PO4structure2.png
Two unit cells of MKP viewed close to the b axis
Names
IUPAC name
Potassium dihydrogen phosphate
Other names
Potassium phosphate monobasic
Phosphoric acid, monopotassium salt
Identifiers
7778-77-0 YesY
ChEMBL ChEMBL1200925 N
ChemSpider 22914 N
EC Number 231-913-4
Jmol 3D model Interactive image
PubChem 516951
RTECS number TC6615500
UNII 4J9FJ0HL51 YesY
  • InChI=1S/3K.H3O4P/c;;;1-5(2,3)4/h;;;(H3,1,2,3,4)/q3*+1;/p-3 YesY
    Key: LWIHDJKSTIGBAC-UHFFFAOYSA-K YesY
  • InChI=1/3K.H3O4P/c;;;1-5(2,3)4/h;;;(H3,1,2,3,4)/q3*+1;/p-3
    Key: LWIHDJKSTIGBAC-DFZHHIFOAX
  • [K+].OP(O)([O-])=O
Properties
KH2PO4
Molar mass 136.086 g/mol
Appearance White powder
deliquescent
Odor odorless
Density 2.338 g/cm3
Melting point 252.6 °C (486.7 °F; 525.8 K)
Boiling point 400 °C (752 °F; 673 K) (decomposes)
22.6 g/100 mL (20 °C)
83.5 g/100 mL (90 °C)
Solubility slightly soluble in ethanol
Acidity (pKa) 6.86[1]
Basicity (pKb) 11.9
1.4864
Structure
tetragonal[2]
I42d
a = 0.744 nm, b = 0.744 nm, c = 0.697 nm
Vapor pressure {{{value}}}
Related compounds
Other cations
Monosodium phosphate
Monoammonium phosphate
Related compounds
Dipotassium phosphate
Tripotassium phosphate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YesYN ?)
Infobox references

Monopotassium phosphate, MKP, (also potassium dihydrogen phosphate, KDP, or monobasic potassium phosphate), KH2PO4, is a soluble salt of potassium and the dihydrogen phosphate ion which is used as a fertilizer, a food additive and a fungicide. It is a source of phosphorus and potassium. It is also a buffering agent. When used in fertilizer mixtures with urea and ammonium phosphates, it minimizes escape of ammonia by keeping the pH at a relatively low level.

Single crystals are paraelectric at room temperature. At temperatures below Lua error in Module:Convert at line 272: attempt to index local 'cat' (a nil value). they become ferroelectric.

Structure

Monopotassium phosphate can exist in several polymorphs. At room temperature it forms paraelectric crystals with tetragonal symmetry. Upon cooling to −150 °C it transforms to a ferroelectric phase of orthorhombic symmetry, and the transition temperature shifts up to −50 °C to when hydrogen is replaced by deuterium.[3] Heating to 190 °C changes its structure to monoclinic.[4] When heated further, MKP decomposes, by loss of water, to potassium metaphosphate, KPO3, at 400 °C (752 °F).

Symmetry Space
group
No Pearson
symbol
a (nm) b (nm) c (nm) Z density,
g/cm3
T (°C)
Orthorhombic[3] Fdd2 43 oF48 1.0467 1.0533 0.6926 8 2.37 < −150
Tetragonal[2] I42d 122 tI24 0.744 0.744 0.697 4 2.34 −150 to 190
Monoclinic[4] P21/c 14 mP48 0.733 1.449 0.747 8 190 to 400

Manufacturing

Monopotassium phosphate is produced by the action of phosphoric acid on potassium carbonate.

Applications

Fertilizer-grade MKP powder contains the equivalent of 52% P2O5 and 34% K2O, and is labeled NPK 0-52-34. MKP powder is often used as a nutrient source in the greenhouse trade and in hydroponics.

As a crystal, MKP is noted for its non-linear optical properties. Used in optical modulators and for non-linear optics such as second-harmonic generation (SHG).

Also to be noted is KD*P, potassium dideuterium phosphate, with slightly different properties. Highly deuterated KDP is used in nonlinear frequency conversion of laser light instead of protonated (regular) KDP due to the fact that the replacement of protons with deuterons in the crystal shifts the third overtone of the strong OH molecular stretch to longer wavelengths, moving it mostly out of the range of the fundamental line at ~1064 nm of neodymium-based lasers. Regular KDP has absorbances at this wavelength of approximately 4.7–6.3%/cm of thickness while highly deuterated KDP has absorbances of typically less than 0.8%/cm.

Gallery

References

  1. Mathews, Christopher K., K. E. Van Holde, Ean R. Appling, and Spencer J. Anthony-Cahill. Biochemistry. Redwood City, CA: Benjamin/Cummings Pub., 1990. Print.
  2. 2.0 2.1 Lua error in package.lua at line 80: module 'strict' not found.
  3. 3.0 3.1 Lua error in package.lua at line 80: module 'strict' not found.
  4. 4.0 4.1 Lua error in package.lua at line 80: module 'strict' not found.

External links