List of most massive stars

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

This is a list of the most massive stars so far discovered, in solar masses (M).

Uncertainties and caveats

Most of the masses listed below are contested and, being the subject of current research, remain under review and subject to revision. Indeed, many of the masses listed in the table below are inferred from theory, using difficult measurements of the stars’ temperatures and absolute brightnesses. All the listed masses are uncertain: both the theory and the measurements are pushing the limits of current knowledge and technology. Either measurement or theory, or both, could be incorrect. For example, VV Cephei could be between 25–40 M, or 100 M, depending on which property of the star is examined.

Artist's impression of disc of obscuring material around a massive star.

Massive stars are rare; astronomers must look very far from the Earth to find one. All the listed stars are many thousands of light years away and that alone makes measurements difficult. In addition to being far away, many stars of such extreme mass are surrounded by clouds of outflowing gas; the surrounding gas interferes with the already difficult-to-obtain measurements of stellar temperatures and brightnesses and greatly complicates the issue of estimating internal chemical compositions. For some methods, different determinations of chemical composition lead to different estimates of mass. In addition, the clouds of gas make it difficult to judge whether the star is just a single supermassive object or, instead, a multiple star system. A number of the "stars" listed below may actually consist of two or more companions in close orbit, each star being massive in itself but not necessarily supermassive. Other combinations are possible – for example a supermassive star with one or more smaller companions or more than one giant star. Without being able to see inside the surrounding cloud, it is difficult to know the truth of the matter. More globally, statistics on stellar populations seem to indicate that the upper mass limit is in the 100-200 solar mass range.

Amongst the most reliable listed masses are those for the eclipsing binaries NGC 3603-A1, WR21a, and WR20a. Masses for all three were obtained from orbital measurements – for a binary star, it is possible to measure the individual masses of the two stars by studying their orbital motions, using Kepler's laws of planetary motion. This involves measuring their radial velocities and also their light curves. The radial velocities only yield minimum values for the masses, depending on inclination, but lightcurves of eclipsing binaries provide the missing information: inclination of the orbit to our line of sight. Therefore, the masses of eclipsing binaries are the sole ones to be derived with some accuracy.

However note that the table below mostly lists masses derived by indirect methods, and only a few masses derived for eclipsing systems.

Relevance of stellar evolution

Some stars may once have been heavier than they are today. It is likely that many have lost tens of solar masses of material in the process of degassing, or in sub-supernova and supernova impostor explosion events.

There are also – or rather were – stars that might have appeared on the list but no longer exist as stars. Today we see only the debris (see for example hypernovae and supernova remnant). The masses of the precursor stars that fueled these cataclysms can be estimated from the type of explosion and the energy released, but those masses are not listed here.

List of the most massive stars

A few stars with an estimated mass of 25 or greater M, including the stars of Arches cluster, Cygnus OB2 cluster, Pismis 24 cluster and R136 cluster. Note that all O-stars have masses > 15 M and catalogs of such stars (GOSS, Reed) contain hundreds of cases. Masses quoted below are their current (evolutionary) mass, not their initial (formation) mass. The list is very far from complete, especially below 80 M—although the majority of stars thought to be more than 100 M are shown. Method is provided to get an idea of uncertainty—direct methods (binarity) being more secure than indirect ones (conversion form luminosity, extrapolation from atmosphere models,...).

Legend
Wolf–Rayet star
Luminous blue variable star
O-class star
B-class star
Hypergiant
The R136 cluster
Star name Mass
(M, Sun = 1)
Method Refs.
R136a1  315 Evolutionary model [1]
R136c  230 Evolutionary model [1]
BAT99-98 226 Luminosity/Atmosphere model [2]
R136a2  195 Evolutionary model [1]
Melnick 42 189 Luminosity/Atmosphere model [3]
R136a3  180 Evolutionary model [1]
Melnick 34 179 Luminosity/Atmosphere model [4]
HD 15558 >152 ± 51 Binary [5][6]
VFTS 682  150 Luminosity/Atmosphere model [7]
R136a6  150 Evolutionary model [1]
LH 10-3209 A 140 ? [8]
NGC 3603-B  132 ± 13 Luminosity/Atmosphere model [9]
HD 269810   130 Luminosity/Atmosphere model [10]
P871 130 ? [8]
WR 42e 125–135 Ejection in triple system [11][lower-alpha 1]
R136a4  124 Evolutionary model [1]
Arches-F9  111–131 Luminosity/Atmosphere model [12]
NGC 3603-A1a  120 Eclipsing binary [9]
BAT99-119 (R145) 120 Binary [13][lower-alpha 2]
NGC 3603-C 113 ± 10 Luminosity/Atmosphere model [9]
Cygnus OB2-12  110 Luminosity/Atmosphere model [14]
WR 25 110 Binary?
HD 93129 A  110 Luminosity/Atmosphere model
Arches-F1  101–119 Luminosity/Atmosphere model [12]
Arches-F6  101–119 Luminosity/Atmosphere model [12]
WR21a A 103.6 Binary [15]
BAT99-33 (R99) 103 Luminosity/Atmosphere model [2]
R136a5  101 Evolutionary model [1]
η Carinae A 100 - 200 Luminosity/Binary [16][17]
Peony Star 100 Luminosity/Atmosphere model? [18]
Cygnus OB2 #516 100 Luminosity?
Sk -68°137 99 ? [8]
R136a8  96 Evolutionary model [1]
HST-42 95 ? [8]
P1311 94 ? [8]
Sk -66°172 94 ? [8]
Arches-F7  86–102 Luminosity/Atmosphere model [12]
R136b  93 Evolutionary model [1]
NGC 3603-A1b  92 Eclipsing binary [9]
HST-A3 91 ? [8]
HD 38282 B >90 Luminosity [19]
Cygnus OB2 #771 90 Luminosity/Atmosphere model?
Arches-F15  80–97 Luminosity/Atmosphere model [12]
HSH95 31 87 Evolutionary model[1]
HD 93250  86.83 Luminosity/Atmosphere model [20]
LH 10-3061 85 ? [8]
BI 253 84
WR20a A 82.7 ± 5.5 Eclipsing binary [21]
MACHO 05:34-69:31 82 ? [8]
WR20a B  81.9 ± 5.5 Eclipsing binary [21]
NGC 346-3 81 ? [8]
HD 38282 A >80 Luminosity [19]
Sk -71 51 80 Luminosity [22]
Cygnus OB2-8B 80 Luminosity?
WR 148 80 ? [23]
HD 97950 80 ?

A few additional examples with masses lower than 80 M.

Star name Mass
(M, Sun = 1)
Refs.
R139 A 78 [24]
V429 Carinae A 78
WR 22 78
Pismis 24-17 78 [25]
Cygnus OB2-11 73+32
−24
[26]
Arches-F12 70–82
Arches-F18 67–82
Var 83 in M33 60–85
Arches-F4 66–76
Arches-F28 66–76
R126 70
Companion to M33 X-7 70 [27]
AG Carinae 70
BD+43° 3654 70
HD 93205 69 [8]
R136a7  69 Evolutionary model[1]
HD 93403 A 68.5
HD 5980 B 66
LBV 1806-20 A + B A=65, B=65
LH54-425 A 62
HD 5980 A 61
Arches-F21 56–70
Arches-F10 55–69
Arches-F14 54–65
S Monocerotis 59
WR21a B 58.3 [15]
WR 102ea 58 [28]
Arches-F3 52–63
CD Crucis A 57 [29]
Arches-B1 50–60
Plaskett's star B 56
η Carinae B 30-80 Luminosity/Binary [17]
BD+40° 4210 54
Plaskett's star A 54
HD 93129 B 52 [30]
Cygnus OB2-4 52
Arches-F20 47–57
Arches-F16 46–56
WR 102c 45–55 [18]
CD Crucis B 48 [29]
Arches-F8 43–51
Sher 25 in NGC 3603 40–52
Arches-F2 42–49
HD 15558 45 ± 11 [5][6]
S Doradus 45
HD 50064 45
WR 141 45 [23]
IRS-8* 44.5 [31]
Cygnus OB2-8A A 44.1
Cygnus OB2-1 44
Cygnus OB2-10 43.1±14 [26]
α Camelopardalis 43
Pismis 24-2 43
χ2 Orionis 42.3
Cygnus OB2-8C 42.2±14 [26]
Cygnus OB2-6 42
ε Orionis 30-64.5[32]
RW Cephei 40
θ1 Orionis C 40
μ Nor 40
Cygnus OB2-7  39.7+17
−10
[26]
ζ Puppis 22.5–56.6
Companion to NGC 300 X-1 38 [33]
Pismis 24-16 38
Pismis 24-25 38
Cygnus OB2-8A B 37.4
HD 93403 B 37.3
LH54-425 B 37
ζ1 Scorpii 36
Pismis 24-13 35
Companion to IC 10 X-1[34] 35
Cygnus OB2-9 A >34
Arches-F5 31–36
Cygnus OB2-18 33
ζ Orionis 33
19 Cephei 30–35
ξ Persei 26–36
Cygnus OB2-5 A 31
Cygnus OB2-9 B >30
γ Velorum A 30
P Cygni 30
VFTS 352 A=28.63 ± 0.3, B=28.85 ± 0.3 [35]
The Pistol Star 27.5
10 Lacertae 26.9
6 Cassiopeiae 25 [36]
Pismis 24-3 25
NGC 7538 S 25 [37]
VFTS 102 25
ρ Cassiopeiae 14–30
  1. This unusual measurement was made by assuming the star was ejected from a three-body encounter in NGC 3603. This assumption also means that the current star is the result of a merger between two original close binary components. The mass is consistent with evolutionary mass for a star with the observed parameters.
  2. These are minimum values with the orbital solution still uncertain.

Black holes

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

Black holes are the end point evolution of massive stars. Technically they are not stars, as they no longer generate heat and light via nuclear fusion in their cores.

Eddington's size limit

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

The limit on mass arises because stars of greater mass have a higher rate of core energy generation, their luminosity increasing far out of proportion to their mass. For a sufficiently massive star the outward pressure of radiant energy generated by nuclear fusion in the star’s core exceeds the inward pull of its own gravity. This is called the Eddington limit. Beyond this limit, a star ought to push itself apart, or at least shed enough mass to reduce its internal energy generation to a lower, maintainable rate. In theory, a more massive star could not hold itself together, because of the mass loss resulting from the outflow of stellar material. In practice the theoretical Eddington Limit must be modified for high luminosity stars and the empirical Humphreys Davidson Limit is derived.[38]

Astronomers have long theorized that as a protostar grows to a size beyond 120 M, something drastic must happen. Although the limit can be stretched for very early Population III stars, and the exact value is uncertain, if any stars still exist above 150-200 M, they would challenge current theories of stellar evolution. Studying the Arches cluster, which is currently the densest cluster of stars in our galaxy, astronomers have confirmed that stars in that cluster do not occur any larger than about 150 M. One theory to explain rare ultramassive stars that exceed this limit, for example in the R136 star cluster, is the collision and merger of two massive stars in a close binary system.[39]

See also

<templatestyles src="Div col/styles.css"/>

References

  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 Lua error in package.lua at line 80: module 'strict' not found.
  2. 2.0 2.1 Lua error in package.lua at line 80: module 'strict' not found.
  3. Lua error in package.lua at line 80: module 'strict' not found.
  4. Lua error in package.lua at line 80: module 'strict' not found.
  5. 5.0 5.1 Lua error in package.lua at line 80: module 'strict' not found.
  6. 6.0 6.1 Lua error in package.lua at line 80: module 'strict' not found.
  7. Lua error in package.lua at line 80: module 'strict' not found.
  8. 8.00 8.01 8.02 8.03 8.04 8.05 8.06 8.07 8.08 8.09 8.10 Lua error in package.lua at line 80: module 'strict' not found.
  9. 9.0 9.1 9.2 9.3 Lua error in package.lua at line 80: module 'strict' not found.
  10. Lua error in package.lua at line 80: module 'strict' not found.
  11. Lua error in package.lua at line 80: module 'strict' not found.
  12. 12.0 12.1 12.2 12.3 12.4 Lua error in package.lua at line 80: module 'strict' not found.
  13. Lua error in package.lua at line 80: module 'strict' not found.
  14. Lua error in package.lua at line 80: module 'strict' not found.
  15. 15.0 15.1 Lua error in package.lua at line 80: module 'strict' not found.
  16. Lua error in package.lua at line 80: module 'strict' not found.
  17. 17.0 17.1 Lua error in package.lua at line 80: module 'strict' not found.
  18. 18.0 18.1 Lua error in package.lua at line 80: module 'strict' not found.
  19. 19.0 19.1 Lua error in package.lua at line 80: module 'strict' not found.
  20. Lua error in package.lua at line 80: module 'strict' not found.
  21. 21.0 21.1 Lua error in package.lua at line 80: module 'strict' not found.
  22. Lua error in package.lua at line 80: module 'strict' not found.
  23. 23.0 23.1 Lua error in package.lua at line 80: module 'strict' not found.
  24. Lua error in package.lua at line 80: module 'strict' not found.
  25. Lua error in package.lua at line 80: module 'strict' not found.
  26. 26.0 26.1 26.2 26.3 Lua error in package.lua at line 80: module 'strict' not found.
  27. Lua error in package.lua at line 80: module 'strict' not found.
  28. Lua error in package.lua at line 80: module 'strict' not found.
  29. 29.0 29.1 Lua error in package.lua at line 80: module 'strict' not found.
  30. Lua error in package.lua at line 80: module 'strict' not found.
  31. Lua error in package.lua at line 80: module 'strict' not found.
  32. Lua error in package.lua at line 80: module 'strict' not found.
  33. Lua error in package.lua at line 80: module 'strict' not found.
  34. Lua error in package.lua at line 80: module 'strict' not found.
  35. Lua error in package.lua at line 80: module 'strict' not found.
  36. Lua error in package.lua at line 80: module 'strict' not found.
  37. Lua error in package.lua at line 80: module 'strict' not found.
  38. Lua error in package.lua at line 80: module 'strict' not found.
  39. Lua error in package.lua at line 80: module 'strict' not found.

External links