Isotopes of nickel
Naturally occurring nickel (Ni) is composed of five stable isotopes; 58Ni, 60Ni, 61Ni, 62Ni and 64Ni with 58Ni being the most abundant (68.077% natural abundance).[1] 58Ni may decay by double beta-plus decay to 58Fe.[2] 26 radioisotopes have been characterised with the most stable being 59Ni with a half-life of 76,000 years, 63Ni with a half-life of 100.1 years, and 56Ni with a half-life of 6.077 days. All of the remaining radioactive isotopes have half-lives that are less than 60 hours and the majority of these have half-lives that are less than 30 seconds. This element also has 1 meta state.
Isotopes of nickel
The isotopes of nickel range in atomic weight from 48Ni to 78Ni.
Nickel-48, discovered in 1999, is the most neutron-poor nickel isotope known. With 28 protons and 20 neutrons 48Ni is "doubly magic" (like 208Pb) and therefore unusually stable.[3]
Nickel-56 is produced in large quantities in type Ia supernovae and the shape of the light curve of these supernovae corresponds to the decay of nickel-56 to cobalt-56 and then to iron-56.
Nickel-58 is the most abundant isotope of nickel, making up 68.077% of the natural abundance. Possible sources include electron capture from copper-58 and EC + p from zinc-59.
Nickel-59 is a long-lived cosmogenic radionuclide with a half-life of 76,000 years. 59Ni has found many applications in isotope geology. 59Ni has been used to date the terrestrial age of meteorites and to determine abundances of extraterrestrial dust in ice and sediment.
Nickel-60 is the daughter product of the extinct radionuclide 60Fe (half-life = 2.6 My). Because 60Fe had such a long half-life, its persistence in materials in the solar system at high enough concentrations may have generated observable variations in the isotopic composition of 60Ni. Therefore, the abundance of 60Ni present in extraterrestrial material may provide insight into the origin of the solar system and its early history/very early history. Unfortunately, nickel isotopes appear to have been heterogeneously distributed in the early solar system. Therefore, so far, no actual age information has been attained from 60Ni excesses. Other sources may also include beta decay from cobalt-60 and electron capture from copper-60.
Nickel-61 is the only stable isotope of nickel with a nuclear spin (I = 3/2), which makes it useful for studies by EPR spectroscopy.[4]
Nickel-62 has the highest binding energy per nucleon of any isotope for any element, when including the electron shell in the calculation. More energy is released forming this isotope than any other, although fusion can form heavier isotopes. For instance, two 40Ca atoms can fuse to form 80Kr plus 4 electrons, liberating 77 keV per nucleon, but reactions leading to the iron/nickel region are more probable as they release more energy per baryon.
Nickel-64 is another stable isotope of nickel. Possible sources include beta decay from cobalt-64, and electron capture from copper-64
Nickel-78 is the element's heaviest isotope and is believed to have an important involvement in supernova nucleosynthesis of elements heavier than iron.[5]
Relative atomic mass: 58.6934(4)[6][7]
Table
nuclide symbol |
Z(p) | N(n) | isotopic mass (u) |
half-life | decay mode(s)[8][n 1] |
daughter isotope(s)[n 2] |
nuclear spin |
representative isotopic composition (mole fraction) |
range of natural variation (mole fraction) |
---|---|---|---|---|---|---|---|---|---|
excitation energy | |||||||||
48Ni | 28 | 20 | 48.01975(54)# | 10# ms [>500 ns] |
0+ | ||||
49Ni | 28 | 21 | 49.00966(43)# | 13(4) ms [12(+5-3) ms] |
7/2−# | ||||
50Ni | 28 | 22 | 49.99593(28)# | 9.1(18) ms | β+ | 50Co | 0+ | ||
51Ni | 28 | 23 | 50.98772(28)# | 30# ms [>200 ns] |
β+ | 51Co | 7/2−# | ||
52Ni | 28 | 24 | 51.97568(9)# | 38(5) ms | β+ (83%) | 52Co | 0+ | ||
β+, p (17%) | 51Fe | ||||||||
53Ni | 28 | 25 | 52.96847(17)# | 45(15) ms | β+ (55%) | 53Co | (7/2−)# | ||
β+, p (45%) | 52Fe | ||||||||
54Ni | 28 | 26 | 53.95791(5) | 104(7) ms | β+ | 54Co | 0+ | ||
55Ni | 28 | 27 | 54.951330(12) | 204.7(17) ms | β+ | 55Co | 7/2− | ||
56Ni | 28 | 28 | 55.942132(12) | 6.075(10) d | β+ | 56Co | 0+ | ||
57Ni | 28 | 29 | 56.9397935(19) | 35.60(6) h | β+ | 57Co | 3/2− | ||
58Ni | 28 | 30 | 57.9353429(7) | Observationally stable[n 3] | 0+ | 0.680769(89) | |||
59Ni | 28 | 31 | 58.9343467(7) | 7.6(5)×104 y | EC (99%) | 59Co | 3/2− | ||
β+ (1.5x10−5%)[9] | |||||||||
60Ni | 28 | 32 | 59.9307864(7) | Stable | 0+ | 0.262231(77) | |||
61Ni | 28 | 33 | 60.9310560(7) | Stable | 3/2− | 0.011399(6) | |||
62Ni[n 4] | 28 | 34 | 61.9283451(6) | Stable | 0+ | 0.036345(17) | |||
63Ni | 28 | 35 | 62.9296694(6) | 100.1(20) y | β− | 63Cu | 1/2− | ||
63mNi | 87.15(11) keV | 1.67(3) µs | 5/2− | ||||||
64Ni | 28 | 36 | 63.9279660(7) | Stable | 0+ | 0.009256(9) | |||
65Ni | 28 | 37 | 64.9300843(7) | 2.5172(3) h | β− | 65Cu | 5/2− | ||
65mNi | 63.37(5) keV | 69(3) µs | 1/2− | ||||||
66Ni | 28 | 38 | 65.9291393(15) | 54.6(3) h | β− | 66Cu | 0+ | ||
67Ni | 28 | 39 | 66.931569(3) | 21(1) s | β− | 67Cu | 1/2− | ||
67mNi | 1007(3) keV | 13.3(2) µs | β− | 67Cu | 9/2+ | ||||
IT | 67Ni | ||||||||
68Ni | 28 | 40 | 67.931869(3) | 29(2) s | β− | 68Cu | 0+ | ||
68m1Ni | 1770.0(10) keV | 276(65) ns | 0+ | ||||||
68m2Ni | 2849.1(3) keV | 860(50) µs | 5- | ||||||
69Ni | 28 | 41 | 68.935610(4) | 11.5(3) s | β− | 69Cu | 9/2+ | ||
69m1Ni | 321(2) keV | 3.5(4) s | β− | 69Cu | (1/2−) | ||||
IT | 69Ni | ||||||||
69m2Ni | 2701(10) keV | 439(3) ns | (17/2−) | ||||||
70Ni | 28 | 42 | 69.93650(37) | 6.0(3) s | β− | 70Cu | 0+ | ||
70mNi | 2860(2) keV | 232(1) ns | 8+ | ||||||
71Ni | 28 | 43 | 70.94074(40) | 2.56(3) s | β− | 71Cu | 1/2−# | ||
72Ni | 28 | 44 | 71.94209(47) | 1.57(5) s | β− (>99.9%) | 72Cu | 0+ | ||
β−, n (<.1%) | 71Cu | ||||||||
73Ni | 28 | 45 | 72.94647(32)# | 0.84(3) s | β− (>99.9%) | 73Cu | (9/2+) | ||
β−, n (<.1%) | 72Cu | ||||||||
74Ni | 28 | 46 | 73.94807(43)# | 0.68(18) s | β− (>99.9%) | 74Cu | 0+ | ||
β−, n (<.1%) | 73Cu | ||||||||
75Ni | 28 | 47 | 74.95287(43)# | 0.6(2) s | β− (98.4%) | 75Cu | (7/2+)# | ||
β−, n (1.6%) | 74Cu | ||||||||
76Ni | 28 | 48 | 75.95533(97)# | 470(390) ms [0.24(+55-24) s] |
β− (>99.9%) | 76Cu | 0+ | ||
β−, n (<.1%) | 75Cu | ||||||||
77Ni | 28 | 49 | 76.96055(54)# | 300# ms [>300 ns] |
β− | 77Cu | 9/2+# | ||
78Ni | 28 | 50 | 77.96318(118)# | 120# ms [>300 ns] |
β− | 78Cu | 0+ |
- ↑ Abbreviations:
IT: Isomeric transition - ↑ Bold for stable isotopes
- ↑ Believed to decay by β+β+ to 58Fe with a half-life over 7×1020 years
- ↑ Highest binding energy per nucleon of all nuclides
Notes
- Values marked # are not purely derived from experimental data, but at least partly from systematic trends. Spins with weak assignment arguments are enclosed in parentheses.
- Uncertainties are given in concise form in parentheses after the corresponding last digits. Uncertainty values denote one standard deviation, except isotopic composition and standard atomic mass from IUPAC, which use expanded uncertainties.
- Nuclide masses are given by IUPAP Commission on Symbols, Units, Nomenclature, Atomic Masses and Fundamental Constants (SUNAMCO).
- Isotope abundances are given by IUPAC Commission on Isotopic Abundances and Atomic Weights.
References
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- Isotope masses from:
- Lua error in package.lua at line 80: module 'strict' not found.
- Isotopic compositions and standard atomic masses from:
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
- Half-life, spin, and isomer data selected from the following sources. See editing notes on this article's talk page.
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
See also
Isotopes of cobalt | Isotopes of nickel | Isotopes of copper |
Table of nuclides |
Isotopes of the chemical elements | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 H |
2 He |
||||||||||||||||
3 Li |
4 Be |
5 B |
6 C |
7 N |
8 O |
9 F |
10 Ne |
||||||||||
11 Na |
12 Mg |
13 Al |
14 Si |
15 P |
16 S |
17 Cl |
18 Ar |
||||||||||
19 K |
20 Ca |
21 Sc |
22 Ti |
23 V |
24 Cr |
25 Mn |
26 Fe |
27 Co |
28 Ni |
29 Cu |
30 Zn |
31 Ga |
32 Ge |
33 As |
34 Se |
35 Br |
36 Kr |
37 Rb |
38 Sr |
39 Y |
40 Zr |
41 Nb |
42 Mo |
43 Tc |
44 Ru |
45 Rh |
46 Pd |
47 Ag |
48 Cd |
49 In |
50 Sn |
51 Sb |
52 Te |
53 I |
54 Xe |
55 Cs |
56 Ba |
72 Hf |
73 Ta |
74 W |
75 Re |
76 Os |
77 Ir |
78 Pt |
79 Au |
80 Hg |
81 Tl |
82 Pb |
83 Bi |
84 Po |
85 At |
86 Rn |
|
87 Fr |
88 Ra |
104 Rf |
105 Db |
106 Sg |
107 Bh |
108 Hs |
109 Mt |
110 Ds |
111 Rg |
112 Cn |
113 Uut |
114 Fl |
115 Uup |
116 Lv |
117 Uus |
118 Uuo |
|
57 La |
58 Ce |
59 Pr |
60 Nd |
61 Pm |
62 Sm |
63 Eu |
64 Gd |
65 Tb |
66 Dy |
67 Ho |
68 Er |
69 Tm |
70 Yb |
71 Lu |
|||
89 Ac |
90 Th |
91 Pa |
92 U |
93 Np |
94 Pu |
95 Am |
96 Cm |
97 Bk |
98 Cf |
99 Es |
100 Fm |
101 Md |
102 No |
103 Lr |
|||