Isotopes of neon

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

Neon (Ne) possesses three stable isotopes, 20Ne, 21Ne, and 22Ne. In addition, 16 radioactive isotopes have been discovered ranging from 16Ne to 34Ne, all short-lived. The longest-lived is 24Ne with a half-life of 3.38 minutes. All others are under a minute, most under a second. The least stable is 16Ne with a half-life of 9×10−21 s. See isotopes of carbon for notes about the measurement.

Relative atomic mass: 20.1797(6).

A chart showing the abundances of the naturally-occurring isotopes of neon.

Table

nuclide
symbol
Z(p) N(n)  
isotopic mass (u)
 
half-life decay mode(s)[1] daughter
isotope(s)[n 1]
nuclear
spin
representative
isotopic
composition
(mole fraction)
range of natural
variation
(mole fraction)
16Ne 10 6 16.025761(22) 9×10−21 s
[122(37) keV]
2p 14O 0+
17Ne[n 2] 10 7 17.017672(29) 109.2(6) ms β+, p (96.0%) 16O 1/2–
β+, α (2.7%) 13N
β+ (1.3%) 17F
18Ne 10 8 18.0057082(3) 1.672(8) s Electron capture (EC) 18F 0+
2p (possibly 2He)[2] 16O
19Ne 10 9 19.0018802(3) 17.296(5) s+ β+ 19F 1/2+
20Ne 10 10 19.9924401754(19) Stable 0+ 0.9048(3) 0.8847–0.9051
21Ne 10 11 20.99384668(4) Stable 3/2+ 0.0027(1) 0.0027–0.0171
22Ne 10 12 21.991385114(19) Stable 0+ 0.0925(3) 0.0920–0.0996
23Ne 10 13 22.99446690(11) 37.24(12) s β 23Na 5/2+
24Ne 10 14 23.9936108(4) 3.38(2) min β 24Na 0+
25Ne 10 15 24.997737(28) 602(8) ms β 25Na (3/2)+
26Ne 10 16 26.000461(29) 197(1) ms β (99.87%) 26Na 0+
β, n (.13%) 25Na
27Ne 10 17 27.00759(12) 32(2) ms β (98.0%) 27Na (3/2+)#
β, n (2.0%) 26Na
28Ne 10 18 28.01207(16) 18.3(22) ms β (78.0%) 28Na 0+
β, n (22.0%) 27Na
29Ne 10 19 29.01939(29) 15.6(5) ms β 29Na (3/2+)#
30Ne 10 20 30.02480(61) 5.8(2) ms β 30Na 0+
31Ne 10 21 31.03311(97)# 3.4(8) ms β 31Na 7/2−#
β, n 30Na
32Ne 10 22 32.04002(86)# 3.5(9) ms β, n 31Na 0+
β 32Na
33Ne 10 23 33.04938(86)# <260 ns 7/2−#
34Ne 10 24 34.05703(87)# 1# ms [>1.5 µs] 0+
  1. Bold for stable isotopes
  2. Has 2 halo protons

Notes

  • The isotopic composition refers to that in air.
  • The precision of the isotope abundances and atomic mass is limited through variations. The given ranges should be applicable to any normal terrestrial material.
  • Geologically exceptional samples are known in which the isotopic composition lies outside the reported range. The uncertainty in the atomic mass may exceed the stated value for such specimens.
  • Commercially available materials may have been subjected to an undisclosed or inadvertent isotopic fractionation. Substantial deviations from the given mass and composition can occur.
  • Values marked # are not purely derived from experimental data, but at least partly from systematic trends. Spins with weak assignment arguments are enclosed in parentheses.
  • Uncertainties are given in concise form in parentheses after the corresponding last digits. Uncertainty values denote one standard deviation, except isotopic composition and standard atomic mass from IUPAC, which use expanded uncertainties.

References

  • Isotope masses from:
    • Lua error in package.lua at line 80: module 'strict' not found.
  • Isotopic compositions and standard atomic masses from:
    • Lua error in package.lua at line 80: module 'strict' not found.
    • Lua error in package.lua at line 80: module 'strict' not found.
  • Half-life, spin, and isomer data selected from the following sources. See editing notes on this article's talk page.
    • Lua error in package.lua at line 80: module 'strict' not found.
    • Lua error in package.lua at line 80: module 'strict' not found.
    • Lua error in package.lua at line 80: module 'strict' not found.
  1. Lua error in package.lua at line 80: module 'strict' not found.
  2. http://physicsworld.com/cws/article/news/2762


Isotopes of fluorine Isotopes of neon Isotopes of sodium
Table of nuclides