Fukushima Daiichi Nuclear Power Plant
<templatestyles src="Module:Hatnote/styles.css"></templatestyles>
<templatestyles src="Module:Hatnote/styles.css"></templatestyles>
Fukushima Daiichi Nuclear Power Plant | |
---|---|
The Fukushima Daiichi Nuclear Power Plant in 2002
|
|
Location of Fukushima Daiichi Nuclear Power Plant in Fukushima Prefecture
|
|
Country | Japan |
Location | Ōkuma, Fukushima |
Coordinates | Lua error in package.lua at line 80: module 'strict' not found. |
Status | Being decommissioned |
Construction began | July 25, 1967 |
Commission date | March 26, 1971 |
Operator(s) | Tokyo Electric Power Company |
Nuclear power station | |
Reactor type | Boiling Water Reactor |
Reactor supplier | General Electric Toshiba Hitachi |
Power generation | |
Units decommissioned | 1 × 460 MWe (Unit 1 damaged) 4 × 784 MWe (Units 2, 3, and 4 damaged; Unit 5 slightly damaged) 1 x 1100 MWe (unit 6 slightly damaged) |
Website http://www.tepco.co.jp/en/nu/press/f1-np/index-e.html |
The Fukushima Daiichi Nuclear Power Plant (福島第一原子力発電所 Fukushima Daiichi Genshiryoku Hatsudensho?) is a disabled BWR nuclear power plant located on a 3.5-square-kilometre (860-acre) site[1] in the towns of Ōkuma and Futaba in the Futaba District of Fukushima Prefecture, Japan. First commissioned in 1971, the plant consists of six boiling water reactors (BWR). These light water reactors[2] drove electrical generators with a combined power of 4.7 GWe, making Fukushima Daiichi one of the 15 largest nuclear power stations in the world. Fukushima was the first nuclear plant to be designed, constructed and run in conjunction with General Electric, Boise, and Tokyo Electric Power Company (TEPCO).[3]
The plant suffered major damage from the magnitude 9.0 earthquake and tsunami that hit Japan on March 11, 2011. The incident permanently damaged several reactors making them impossible to restart. Due to the political climate, the remaining reactors will not be restarted. The disaster disabled the reactor cooling systems, leading to releases of radioactivity and triggering a 30 km evacuation zone surrounding the plant; the releases continue to this day. On April 20, 2011, the Japanese authorities declared the 20 km evacuation zone a no-go area which may only be entered under government supervision.
In April 2012, Units 1-4 were decommissioned. Units 2-4 were decommissioned on April 19, while Unit 1 was the last of these four units to be decommissioned on April 20 at midnight.[citation needed] In December 2013 TEPCO decided none of the undamaged units will reopen.
The sister plant Fukushima II Nuclear Power Plant, or Fukushima Dai-ni ("number two"), is located to the south and also run by TEPCO. It did not suffer a serious accident during the tsunami as cooling continued uninterrupted after the disaster.
Contents
Power plant information
The reactors for Units 1, 2, and 6 were supplied by General Electric, those for Units 3 and 5 by Toshiba, and Unit 4 by Hitachi. All six reactors were designed by General Electric.[4][5] Architectural design for General Electric's units was done by Ebasco. All construction was done by Kajima.[6] Since September 2010, Unit 3 has been fueled by a small fraction (6%)[7] of plutonium containing mixed-oxide (MOX) fuel, rather than the low enriched uranium (LEU) used in the other reactors.[8][9] Units 1–5 were built with Mark I type (light bulb torus) containment structures.[10][11] The Mark I containment structure was slightly increased in volume by Japanese engineers.[12] Unit 6 has a Mark II type (over/under) containment structure.[10][11][13]
Unit 1 is a 460 MW boiling water reactor (BWR-3) constructed in July 1967. It commenced commercial electrical production on March 26, 1971, and was initially scheduled for shutdown in early 2011.[14] In February 2011, Japanese regulators granted an extension of ten years for the continued operation of the reactor.[15] It was damaged during the 2011 Tōhoku earthquake and tsunami.[16]
Unit 1 was designed for a peak ground acceleration of 0.18 g (1.74 m/s2) and a response spectrum based on the 1952 Kern County earthquake, but rated for 0.498 g.[10][17] The design basis for Units 3 and 6 were 0.45 g (4.41 m/s2) and 0.46 g (4.48 m/s2) respectively.[18] All units were inspected after the 1978 Miyagi earthquake when the ground acceleration was 0.125 g (1.22 m/s2) for 30 seconds, but no damage to the critical parts of the reactor was discovered.[10] The design basis for tsunamis was 5.7 meters.[19]
The reactor's emergency diesel generators and DC batteries, crucial components in helping keep the reactors cool in the event of a power loss, were located in the basements of the reactor turbine buildings. The reactor design plans provided by General Electric specified placing the generators and batteries in that location, but mid-level engineers working on the construction of the plant were concerned that this made the backup power systems vulnerable to flooding. TEPCO elected to strictly follow General Electric's design in the construction of the reactors.[20]
Site layout
The plant is on a bluff which was originally 35 meters above sea level. During construction, however, TEPCO lowered the height of the bluff by 25 meters. One reason for lowering the bluff was to allow the base of the reactors to be constructed on solid bedrock in order to mitigate the threat posed by earthquakes. Another reason was the lowered height would keep the running costs of the seawater pumps low. TEPCO's analysis of the tsunami risk when planning the site's construction determined that the lower elevation was safe because the sea wall would provide adequate protection for the maximum tsunami assumed by the design basis. However, the lower site elevation did increase the vulnerability for a tsunami larger than anticipated in design.[21]
The Fukushima Daiichi site is divided into two reactor groups, the leftmost group when viewing from the ocean contains units 4, 3, 2 and 1 going from left to right. The rightmost group when viewing from the ocean contains the newer units 5 and 6, respectively, the positions from left to right. A set of seawalls protrude into the ocean, with the water intake in the middle and water discharge outlets on either side.
Reactor data
Units 7 and 8 were planned to start construction in April 2012 and 2013 and to come into operation in October 2016 and 2017 respectively. The project was formally canceled by TEPCO in April 2011 after local authorities questioned the fact that they were still included in the supply plan for 2011, released in March 2011, after the accidents. The company stated that the plan had been drafted before the earthquake.[22]
Unit | Type[23] | Containment | Start construction[24] | First criticality[24] | Commercial operation[24] | Decommissioned | Electric power[24] | Reactor supplier[23] | Architecture[6] | Construction[6] | Fuel |
---|---|---|---|---|---|---|---|---|---|---|---|
Fukushima I – 1[citation needed] | BWR-3 | Mark I | July 25, 1967 | October 10, 1970 | March 26, 1971 | April 20, 2012 | 460 MW | General Electric | Ebasco | Kajima | LEU |
Fukushima I – 2[citation needed] | BWR-4 | Mark I | June 9, 1969 | May 10, 1973 | July 18, 1974 | April 19, 2012 | 784 MW | General Electric | Ebasco | Kajima | LEU |
Fukushima I – 3[citation needed] | BWR-4 | Mark I | December 28, 1970 | September 6, 1974 | March 27, 1976 | April 19, 2012 | 784 MW | Toshiba | Toshiba | Kajima | LEU/MOX[8] |
Fukushima I – 4[citation needed] | BWR-4 | Mark I | February 12, 1973 | January 28, 1978 | October 12, 1978 | April 19, 2012 | 784 MW | Hitachi | Hitachi | Kajima | |
Fukushima I – 5 | BWR-4 | Mark I | May 22, 1972 | August 26, 1977 | April 18, 1978 | January 31, 2014 | 784 MW | Toshiba | Toshiba | Kajima | |
Fukushima I – 6 | BWR-5 | Mark II | October 26, 1973 | March 9, 1979 | October 24, 1979 | January 31, 2014 | 1,100 MW | General Electric | Ebasco | Kajima | |
Fukushima I – 7 (planned)[25] | ABWR | Canceled 04/2011 | (As originally planned) October 2016 | 1,380 MW | Canceled 04/2011 | ||||||
Fukushima I – 8 (planned)[25] | ABWR | Canceled 04/2011 | (As originally planned) October 2017 | 1,380 MW | Canceled 04/2011 |
Electrical connections
The Fukushima Daiichi plant is connected to the power grid by four lines, the 500 kV Futaba Line (双葉線), the two 275 kV Ōkuma Lines (大熊線) and the 66 kV Yonomori Line (夜の森線) to the Shin-Fukushima (New Fukushima) substation.
The Shin-Fukushima substation also connects to the Fukushima Daini plant by the Tomioka Line (富岡線). Its major connection to the north is the Iwaki Line (いわき幹線), which is owned by Tohoku Electric Power. It has two connections to the south-west that connect it to the Shin-Iwaki substation (新いわき).
Operating history
The plant reactors came online one at a time beginning in 1970 and the last in 1979. From the end of 2002 through 2005, the reactors were among those shut down for a time for safety checks due to the TEPCO data falsification scandal.[26][27] On Feb 28, 2011 TEPCO submitted a report to the Japanese Nuclear and Industrial Safety Agency admitting that the company had previously submitted fake inspection and repair reports. The report revealed that TEPCO failed to inspect more than 30 technical components of the six reactors, including power boards for the reactor's temperature control valves, as well as components of cooling systems such as water pump motors and emergency power diesel generators.[28] In 2008, the IAEA warned Japan that the Fukushima was built using outdated safety guidelines, and could be a "serious problem" during a large earthquake.[29] The warning led to the building of an emergency response center in 2010, used during the response to the 2011 nuclear accident.[29][30]
On April 5, 2011, TEPCO vice president Takashi Fujimoto announced that the company was canceling plans to build Reactors No. 7 and 8.[31][32] On May 20 TEPCO's board of directors' officially voted to decommission Units 1 through 4 of the Fukushima Daiichi nuclear power plant and to cancel plans to build units 7 and 8. It refused however to make a decision regarding units 5 and 6 of the station or units 1 to 4 of the Fukushima Daini nuclear power station until a detailed investigation is made. In December 2013 TEPCO decided to decommission the undamaged units 5 and 6; they may be used to test remote clean-up methods before use on the damaged reactors.[33]
<templatestyles src="Template:Hidden begin/styles.css"/>
Year | Unit 1 | Unit 2 | Unit 3 | Unit 4 | Unit 5 | Unit 6 |
---|---|---|---|---|---|---|
1970 | 60.482 | |||||
1971 | 2024.3 | |||||
1972 | 2589.1 | |||||
1973 | 2216.8 | 5.949 | ||||
1974 | 1629.7 | 3670.1 | 284.7 | |||
1975 | 0 | 622.1 | 2961.8 | |||
1976 | 1563.9 | 4191.4 | 4807.1 | |||
1977 | 0 | 49.7 | 2171.1 | 875.1 | ||
1978 | 1497.6 | 3876.3 | 2753.7 | 3163.2 | 4806.7 | |
1979 | 2504.4 | 2976 | 4916.3 | 3917.4 | 3898.6 | 3235.6 |
1980 | 1249.5 | 2889 | 4287 | 4317 | 4282.6 | 6441.1 |
1981 | 1084.8 | 3841.8 | 3722.8 | 4667.5 | 4553.9 | 7418.6 |
1982 | 2355 | 5290.2 | 2886.8 | 5734.7 | 4061.3 | 6666.5 |
1983 | 3019.5 | 3422.7 | 4034 | 4818.2 | 5338.8 | 5387.8 |
1984 | 2669.761 | 3698.718 | 4497.326 | 4433.166 | 4691.482 | 5933.242 |
1985 | 1699.287 | 4266.285 | 5798.641 | 4409.031 | 4112.429 | 5384.802 |
1986 | 2524.683 | 5541.101 | 4234.196 | 4315.241 | 4157.361 | 7783.537 |
1987 | 3308.888 | 3851.078 | 3748.839 | 5964.048 | 3995.012 | 7789.201 |
1988 | 2794.464 | 4101.251 | 5122.991 | 5309.892 | 5952.712 | 5593.058 |
1989 | 1440.778 | 6516.393 | 5706.694 | 4232.648 | 4766.535 | 5128.362 |
1990 | 2352.405 | 3122.761 | 2919.548 | 4273.767 | 3956.549 | 7727.073 |
1991 | 1279.986 | 3853.054 | 4491.022 | 6483.384 | 6575.818 | 6948.662 |
1992 | 1794.061 | 4568.531 | 6098.742 | 4082.747 | 4841.234 | 5213.607 |
1993 | 2500.668 | 4186.704 | 4204.301 | 4206.577 | 4059.685 | 6530.932 |
1994 | 3337.532 | 2265.961 | 4202.304 | 6323.277 | 4246.206 | 8079.391 |
1995 | 3030.829 | 6396.469 | 5966.533 | 5485.662 | 5878.681 | 6850.839 |
1996 | 2298.589 | 5192.318 | 4909.655 | 4949.891 | 5666.866 | 6157.765 |
1997 | 3258.913 | 4618.869 | 2516.651 | 4556.81 | 4609.382 | 9307.735 |
1998 | 3287.231 | 3976.16 | 2632.682 | 5441.398 | 5369.912 | 6328.985 |
1999 | 2556.93 | 3158.382 | 5116.09 | 5890.548 | 6154.135 | 7960.491 |
2000 | 3706.281 | 5167.247 | 5932.485 | 4415.901 | 1647.027 | 7495.577 |
2001 | 487.504 | 5996.521 | 5637.317 | 5858.452 | 5905.13 | 7778.874 |
2002 | 3120.2 | 5101.018 | 3567.314 | 4687.718 | 6590.488 | 6270.918 |
2003 | 0 | 1601.108 | 2483.557 | 0 | 2723.76 | 4623.905 |
2004 | 0 | 3671.49 | 3969.674 | 4728.987 | 5471.325 | 1088.787 |
2005 | 851.328 | 3424.939 | 5103.85 | 1515.596 | 2792.561 | 7986.451 |
2006 | 3714.606 | 3219.494 | 4081.932 | 4811.409 | 4656.9 | 5321.767 |
2007 | 610.761 | 5879.862 | 4312.845 | 5050.607 | 5389.565 | 6833.522 |
2008 | 3036.562 | 5289.599 | 6668.839 | 4410.285 | 3930.677 | 8424.526 |
2009 | 2637.414 | 4903.293 | 4037.601 | 5462.108 | 5720.079 | 7130.99 |
2010 | 2089.015 | 6040.782 |
Warnings and design critique
In 1990, the U.S. Nuclear Regulatory Commission (NRC) ranked the failure of the emergency electricity generators and subsequent failure of the cooling systems of plants in seismically very active regions one of the most likely risks. The Japanese Nuclear and Industrial Safety Agency (NISA) cited this report in 2004. According to Jun Tateno, a former NISA scientist, TEPCO did not react to these warnings and did not respond with any measures.[34]
Filmmaker Adam Curtis mentioned the risks of the type of boiling water reactors cooling systems such as those in Fukushima I,[35] and claimed the risks were known since 1971[36] in a series of documentaries in the BBC in 1992 and advised that PWR type reactors should have been used.
TEPCO, that operated the station, had been warned their seawall was insufficient to withstand a powerful tsunami, but the seawall height was not raised in response. While other stations run by the Tohoku Electric Power company had much more robust seawalls (such as the Onagawa Nuclear Power Plant) down the coast closer to the epicenter of the earthquake, the Fukushima Plant did not.
Incidents and accidents
Prior to March 2011
- In 1978, fuel rods fell in reactor No. 3, causing a nuclear reaction.[37] It took about seven and a half hours to place the rods back into proper positions.[38]
- On 25 February 2009, a manual shutdown was initiated during the middle of a start-up operation. The cause was a high pressure alarm that was caused by the shutting of a turbine bypass valve. The reactor was at 12% of full power when the alarm occurred at 4:03 am (local time) due to a pressure increase to 1,030 psi (7,100 kPa), exceeding the regulatory limit of 1,002 psi (6,910 kPa). The reactor was reduced to 0% power, which exceeded the 5% threshold that requires event reporting, and pressure dropped back under the regulatory limit at 4:25 am. Later, at 8:49 am the control blades were completely inserted, constituting a manual reactor shutdown. An inspection then confirmed that one of the 8 bypass valves had closed and that the valve had a bad driving fluid connection. The reactor had been starting up following its 25th regular inspection, which had begun on 18 October 2008.[39]
- On 26 March 2009, unit 3 had problems with over-insertion of control blades during outage. Repair work was being done on equipment that regulates the driving pressure for the control blades, and when a valve was opened at 2:23 pm a control blade drift alarm went off. On later inspection, it was found that several of the rods had been unintentionally inserted.[40]
- On 2 November 2010, unit 5 had an automatic SCRAM while an operator was conducting an adjustment to the control blade insertion pattern. The SCRAM was caused by a reactor low water level alarm. The turbine tripped along with the reactor and there was no radiation injury to workers.[41]
Nuclear disaster of March 2011
<templatestyles src="Module:Hatnote/styles.css"></templatestyles>
<templatestyles src="Module:Hatnote/styles.css"></templatestyles>
On March 11, 2011 an earthquake categorized as 9.0 MW on the moment magnitude scale occurred at 14:46 Japan Standard Time (JST) off the northeast coast of Japan, one of the most powerful earthquakes in history. Units 4, 5 and 6 had been "shut down" prior to the earthquake for planned maintenance.[43][44] The remaining reactors were shut down/SCRAMed automatically after the earthquake, and the remaining decay heat of the fuel was being cooled with power from emergency generators. The subsequent destructive tsunami with waves of up to 14 meters that over-topped the station, which had seawalls, disabled emergency generators required to cool the reactors and Spent fuel pools in Units 1-5. Over the following three weeks there was evidence of partial nuclear meltdowns in units 1, 2 and 3: visible explosions, suspected to be caused by hydrogen gas, in units 1 and 3; a suspected explosion in unit 2, that may have damaged the primary containment vessel; and a possible uncovering of the Spent fuel pools in Units 1,3 and 4.[45] Units 5 & 6 were reported on March 19, by the station-wide alert log updates of the IAEA, to have gradually rising spent fuel pool temperatures as they had likewise lost offsite power, but onsite power provided by Unit 6's two diesel generators that had not been flooded, were configured to do double-duty and cool both Unit 5 and 6's spent fuel pools "and cores".[46] As a precautionary measure, vents in the roofs of these two units were also made to prevent the possibility of hydrogen gas pressurization and then ignition.[47]
Radiation releases from Units 1-4 caused large evacuations, concern about food and water supplies, and treatment of nuclear workers.[48][49][50] Radiation releases contaminated the 2011 harvest.
The events at units 1, 2 and 3 have been rated at Level 5 each on the International Nuclear Event Scale, and those at unit 4 as Level 3 (Serious Incident) events, with the overall plant rating at Level 7 (major release of radioactive material with widespread health and environmental effects requiring implementation of planned and extended countermeasures).[51]
After March 2011
On April 3, 2011, two bodies were discovered in the basement turbine room, most likely because the workers ran there during the tsunami.
- On April 9, 2013 radioactive water leaked from the storage units, minimally contaminating the soil and water nearby. The leak was controlled and stored in a contained area. The stored water continues to require maintenance, until its ultimate purification.[52]
- On July 9, 2013, TEPCO officials reported that radioactive caesium was 90 times higher than it was 3 days prior (July 6), and that it may spread into the Pacific Ocean. TEPCO reported that the caesium-134 levels in the well water were at 9,000 becquerels per liter, 150 times the legal level, while Caesium-137 measured 18,000 becquerels, 200 times the permitted level.[53]
- On August 7, 2013, Japanese officials said highly radioactive water was leaking from Fukushima Daiichi into the Pacific Ocean at a rate of 300 tons (about 272 metric tons) per day. Japanese Prime Minister Shinzo Abe ordered government officials to step in.[54]
Dismantling of reactors
On 1 August 2013, the Japanese Industry Minister Toshimitsu Motegi approved the creation of a structure to develop the technologies and processes necessary to dismantle the four reactors damaged in the Fukushima accident.[55]
See also
Wikimedia Commons has media related to Fukushima I Nuclear Power Plant. |
- 2011 Earthquake-Tsunami accident
- Fukushima Daiichi nuclear disaster
- Radiation effects from Fukushima Daiichi nuclear disaster
- Japanese reaction to Fukushima Daiichi nuclear disaster
- International reaction to the Fukushima Daiichi nuclear disaster
References
<templatestyles src="Reflist/styles.css" />
Cite error: Invalid <references>
tag; parameter "group" is allowed only.
<references />
, or <references group="..." />
External links
- Official site Tokyo Electric Company 東京電力・福島第一原子力発電所 (Japanese)
- Archived photo. Units 1–4 can be seen from left to right.
- 3D Google Earth view
Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Tepco site (Japanese). One Week Plant Grounds Course.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Fukushima No. 1 plant designed on 'trial-and-error' basis
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Asami, Eiichi (Kyodo News), "American's Fukushima legacy lives on", Japan Times, September 14, 2011, p. 3.
- ↑ 6.0 6.1 6.2 Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ 8.0 8.1 Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ 10.0 10.1 10.2 10.3 Lua error in package.lua at line 80: module 'strict' not found.
- ↑ 11.0 11.1 Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lahey, R.T. and Moody, F.J., "The Thermal-Hydraulics of a Boiling Water Reactor", second edition, 1993.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ [1][dead link]
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Yoshida, Reiji, "GE plan followed with inflexibility", Japan Times, July 14, 2011, p. 1.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Asahi. Tepco Withdrawal of Plans for New Construction at Fukushima Daiichi. (Japanese)
- ↑ 23.0 23.1 Lua error in package.lua at line 80: module 'strict' not found.
- ↑ 24.0 24.1 24.2 24.3 24.4 Lua error in package.lua at line 80: module 'strict' not found.
- ↑ 25.0 25.1 Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ 29.0 29.1 http://www.indianexpress.com/news/iaea-warned-japan-over-nuclear-quake-risk-wikileaks/763709/ IAEA warned Japan over nuclear quake risk: WikiLeaks
- ↑ Japan tsunami: Fukushima Fifty, the first interview
- ↑ Mainichi Shimbun, "TEPCO to drop plan to add two reactors at Fukushima nuclear plant", April 5, 2011.
- ↑ Higgins, Andrew, Washington Post, "March 26: More reactors sought for plant?", Japan Times, April 7, 2011, p. 2.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Makiko Kitamura, Maki Shiraki (Bloomberg, 16. März 2011): Japan's Reactor Risk Foretold 20 Years Ago in U.S. Agency Report
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Ikuko Kao, Japan's TEPCO admits 1978 nuclear criticality, Reuters, March 22, 2007
- ↑ Tepco official release (Japanese).Manual shutdown during reactor startup operations in Fukushima I-1. February 2, 2009.
- ↑ Tepco official release (Japanese). Over-insertion of control rods in Fukushima I-3.
- ↑ Tepco official release (Japanese). Fukushima I-5 Automatic SCRAM Information.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Conditions of Fukushima Dai-ichi Nuclear Power Station Unit 2 as of 14:00 March 27, 2011
- ↑ IAEA press release Japanese Earthquake Update (19 March 2011, 4:30 UTC) 19 March 2011. Archive.org
- ↑ IAEA press release Japanese Earthquake Update (19 March 2011, 4:30 UTC) 19 March 2011. Archive.org
- ↑ Anxiety in Tokyo over radiation in tap water
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ RussiaToday. [2].
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Fukushima : une structure dédiée aux technologies de démantèlement des réacteurs, "Actu environnement", August 2, 2013
- Pages with reference errors
- Wikipedia pages with incorrect protection templates
- Use mdy dates from April 2012
- Articles containing Japanese-language text
- Articles with unsourced statements from January 2013
- Articles with unsourced statements from April 2016
- Commons category link is locally defined
- Articles with Japanese-language external links
- 1967 establishments in Japan
- Fukushima Daiichi nuclear disaster
- Buildings and structures in Fukushima Prefecture
- Nuclear power stations in Japan
- Tokyo Electric Power Company
- Nuclear power stations with closed reactors
- Articles with dead external links from September 2013