File:Britannica(1771)-(4).svg
Summary
This method uses the properties of chords to establish distance https://wikimedia.org/api/rest_v1/media/math/render/svg/e2606b670d56d534e573bb46276605e8b9427921" class="mwe-math-fallback-image-inline mw-math-element" aria-hidden="true" style="vertical-align: -1.838ex; width:5.283ex; height:5.343ex;" alt="{\displaystyle \sin {\frac {\theta }{2}}}"> in the top quadrant, and then transfers this distance onto the latitude radius in the bottom quadrant so that <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc52db15772c3e9aa73b1e4bfc910628eaca710f" class="mwe-math-fallback-image-inline mw-math-element" aria-hidden="true" style="vertical-align: -0.671ex; width:9.432ex; height:2.509ex;" alt="{\displaystyle \sin \phi \sin \theta }"> is established. Again, a transfer of this measure to the chords in the top quadrant. The final lines establish the formula <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/667bd0bd06bbac45de749cd58ee570a67c7fa620" class="mwe-math-fallback-image-inline mw-math-element" aria-hidden="true" style="vertical-align: -0.338ex; width:7.591ex; height:2.009ex;" alt="{\displaystyle \tan \kappa =}"> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b209c651ed4e55a257dc77946b0fcc67da4b0302" class="mwe-math-fallback-image-inline mw-math-element" aria-hidden="true" style="vertical-align: -2.005ex; width:10.268ex; height:5.676ex;" alt="{\displaystyle \sin \theta \sin \phi \over \cos \theta }"> = <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/90f9d67e28da1056f1c6870243e07c258110bc56" class="mwe-math-fallback-image-inline mw-math-element" aria-hidden="true" style="vertical-align: -0.671ex; width:9.936ex; height:2.509ex;" alt="{\displaystyle \tan \theta \sin \phi }"> <img src="
It was used in the <a href="https://en.wikipedia.org/wiki/Encyclopedia_Britannica#1768.E2.80.931826" class="extiw" title="w:Encyclopedia Britannica">Encyclopedia Britannica</a> First Edition 1771- Sixth Edition 1823
- 1: The Gnomon is drawn first against the North South line. In doing so, a diameter at φ degrees to the vertical is drawn- its reflection is needed.
- 2: The circumference is marked off at 15° intervals in the top quadrants. Chords parallel to the horizontal are drawn (the length of these chords will be 2 sin (Θ/2).
- 3: The measurement of each chord is transfered to form a scale along the lower radiuses. When joined these points form a series of parallel lines that are sin θ. sin φ in length.
- 4: These measurements are transferred up to the chord.
- 5: The final hour lines are drawn from the origins through these crossing points.
Licensing
Lua error in package.lua at line 80: module 'strict' not found.
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 16:27, 15 January 2017 | 744 × 744 (77 KB) | 127.0.0.1 (talk) | <p>This method uses the properties of chords to establish distance <span><span class="mwe-math-mathml-inline mwe-math-mathml-a11y mw-math-element" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow class="MJX-TeXAtom-ORD"><mstyle displaystyle="true" scriptlevel="0"><mi>sin</mi><mo><!-- --></mo><mrow class="MJX-TeXAtom-ORD"><mfrac><mi>θ<!-- θ --></mi><mn>2</mn></mfrac></mrow></mstyle></mrow><annotation encoding="application/x-tex">{\displaystyle \sin {\frac {\theta }{2}}}</annotation></semantics></math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2606b670d56d534e573bb46276605e8b9427921" class="mwe-math-fallback-image-inline mw-math-element" aria-hidden="true" style="vertical-align: -1.838ex; width:5.283ex; height:5.343ex;" alt="{\displaystyle \sin {\frac {\theta }{2}}}"></span> in the top quadrant, and then transfers this distance onto the latitude radius in the bottom quadrant so that <span><span class="mwe-math-mathml-inline mwe-math-mathml-a11y mw-math-element" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow class="MJX-TeXAtom-ORD"><mstyle displaystyle="true" scriptlevel="0"><mi>sin</mi><mo><!-- --></mo><mi>ϕ<!-- ϕ --></mi><mi>sin</mi><mo><!-- --></mo><mi>θ<!-- θ --></mi></mstyle></mrow><annotation encoding="application/x-tex">{\displaystyle \sin \phi \sin \theta }</annotation></semantics></math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc52db15772c3e9aa73b1e4bfc910628eaca710f" class="mwe-math-fallback-image-inline mw-math-element" aria-hidden="true" style="vertical-align: -0.671ex; width:9.432ex; height:2.509ex;" alt="{\displaystyle \sin \phi \sin \theta }"></span> is established. Again, a transfer of this measure to the chords in the top quadrant. The final lines establish the formula <span><span class="mwe-math-mathml-inline mwe-math-mathml-a11y mw-math-element" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow class="MJX-TeXAtom-ORD"><mstyle displaystyle="true" scriptlevel="0"><mi>tan</mi><mo><!-- --></mo><mi>κ<!-- κ --></mi><mo>=</mo></mstyle></mrow><annotation encoding="application/x-tex">{\displaystyle \tan \kappa =}</annotation></semantics></math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/667bd0bd06bbac45de749cd58ee570a67c7fa620" class="mwe-math-fallback-image-inline mw-math-element" aria-hidden="true" style="vertical-align: -0.338ex; width:7.591ex; height:2.009ex;" alt="{\displaystyle \tan \kappa =}"></span> <span><span class="mwe-math-mathml-inline mwe-math-mathml-a11y mw-math-element" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow class="MJX-TeXAtom-ORD"><mfrac><mstyle displaystyle="true" scriptlevel="0"><mi>sin</mi><mo><!-- --></mo><mi>θ<!-- θ --></mi><mi>sin</mi><mo><!-- --></mo><mi>ϕ<!-- ϕ --></mi></mstyle><mrow><mi>cos</mi><mo><!-- --></mo><mi>θ<!-- θ --></mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">{\displaystyle \sin \theta \sin \phi \over \cos \theta }</annotation></semantics></math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b209c651ed4e55a257dc77946b0fcc67da4b0302" class="mwe-math-fallback-image-inline mw-math-element" aria-hidden="true" style="vertical-align: -2.005ex; width:10.268ex; height:5.676ex;" alt="{\displaystyle \sin \theta \sin \phi \over \cos \theta }"></span> = <span><span class="mwe-math-mathml-inline mwe-math-mathml-a11y mw-math-element" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow class="MJX-TeXAtom-ORD"><mstyle displaystyle="true" scriptlevel="0"><mi>tan</mi><mo><!-- --></mo><mi>θ<!-- θ --></mi><mi>sin</mi><mo><!-- --></mo><mi>ϕ<!-- ϕ --></mi></mstyle></mrow><annotation encoding="application/x-tex">{\displaystyle \tan \theta \sin \phi }</annotation></semantics></math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/90f9d67e28da1056f1c6870243e07c258110bc56" class="mwe-math-fallback-image-inline mw-math-element" aria-hidden="true" style="vertical-align: -0.671ex; width:9.936ex; height:2.509ex;" alt="{\displaystyle \tan \theta \sin \phi }"></span> </p> <pre>It was used in the <a href="https://en.wikipedia.org/wiki/Encyclopedia_Britannica#1768.E2.80.931826" class="extiw" title="w:Encyclopedia Britannica">Encyclopedia Britannica</a> First Edition 1771- Sixth Edition 1823 </pre> <ul> <li>1: The Gnomon is drawn first against the North South line. In doing so, a diameter at φ degrees to the vertical is drawn- its reflection is needed.</li> <li>2: The circumference is marked off at 15° intervals in the top quadrants. Chords parallel to the horizontal are drawn (the length of these chords will be 2 sin (Θ/2).</li> <li>3: The measurement of each chord is transfered to form a scale along the lower radiuses. When joined these points form a series of parallel lines that are sin θ. sin φ in length.</li> <li>4: These measurements are transferred up to the chord.</li> <li>5: The final hour lines are drawn from the origins through these crossing points.</li> </ul> |
- You cannot overwrite this file.
File usage
The following page links to this file: